【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络

文章目录
文章目录
- 00 写在前面
- 01 基于Pytorch版本的E3D LSTM代码
- 02 论文下载
00 写在前面
测试代码,比较重要,它可以大概判断tensor维度在网络传播过程中,各个维度的变化情况,方便改成适合自己的数据集。
需要github上的数据集以及可运行的代码,可以私聊!
01 基于Pytorch版本的E3D LSTM代码
# 库函数调用
from functools import reduce
from src.utils import nice_print, mem_report, cpu_stats
import copy
import operator
import torch
import torch.nn as nn
import torch.nn.functional as F# E3DLSTM模型代码
class E3DLSTM(nn.Module):def __init__(self, input_shape, hidden_size, num_layers, kernel_size, tau):super().__init__()self._tau = tauself._cells = []input_shape = list(input_shape)for i in range(num_layers):cell = E3DLSTMCell(input_shape, hidden_size, kernel_size)# NOTE hidden state becomes input to the next cellinput_shape[0] = hidden_sizeself._cells.append(cell)# Hook to register submodulesetattr(self, "cell{}".format(i), cell)def forward(self, input):# NOTE (seq_len, batch, input_shape)batch_size = input.size(1)c_history_states = []h_states = []outputs = []for step, x in enumerate(input):for cell_idx, cell in enumerate(self._cells):if step == 0:c_history, m, h = self._cells[cell_idx].init_hidden(batch_size, self._tau, input.device)c_history_states.append(c_history)h_states.append(h)# NOTE c_history and h are coming from the previous time stamp, but we iterate over cellsc_history, m, h = cell(x, c_history_states[cell_idx], m, h_states[cell_idx])c_history_states[cell_idx] = c_historyh_states[cell_idx] = h# NOTE hidden state of previous LSTM is passed as input to the next onex = houtputs.append(h)# NOTE Concat along the channelsreturn torch.cat(outputs, dim=1)class E3DLSTMCell(nn.Module):def __init__(self, input_shape, hidden_size, kernel_size):super().__init__()in_channels = input_shape[0]self._input_shape = input_shapeself._hidden_size = hidden_size# memory gates: input, cell(input modulation), forgetself.weight_xi = ConvDeconv3d(in_channels, hidden_size, kernel_size)self.weight_hi = ConvDeconv3d(hidden_size, hidden_size, kernel_size, bias=False)self.weight_xg = copy.deepcopy(self.weight_xi)self.weight_hg = copy.deepcopy(self.weight_hi)self.weight_xr = copy.deepcopy(self.weight_xi)self.weight_hr = copy.deepcopy(self.weight_hi)memory_shape = list(input_shape)memory_shape[0] = hidden_size# self.layer_norm = nn.LayerNorm(memory_shape)self.group_norm = nn.GroupNorm(1, hidden_size) # wzj# for spatiotemporal memoryself.weight_xi_prime = copy.deepcopy(self.weight_xi)self.weight_mi_prime = copy.deepcopy(self.weight_hi)self.weight_xg_prime = copy.deepcopy(self.weight_xi)self.weight_mg_prime = copy.deepcopy(self.weight_hi)self.weight_xf_prime = copy.deepcopy(self.weight_xi)self.weight_mf_prime = copy.deepcopy(self.weight_hi)self.weight_xo = copy.deepcopy(self.weight_xi)self.weight_ho = copy.deepcopy(self.weight_hi)self.weight_co = copy.deepcopy(self.weight_hi)self.weight_mo = copy.deepcopy(self.weight_hi)self.weight_111 = nn.Conv3d(hidden_size + hidden_size, hidden_size, 1)def self_attention(self, r, c_history):batch_size = r.size(0)channels = r.size(1)r_flatten = r.view(batch_size, -1, channels)# BxtaoTHWxCc_history_flatten = c_history.view(batch_size, -1, channels)# Attention mechanism# BxTHWxC x BxtaoTHWxC' = B x THW x taoTHWscores = torch.einsum("bxc,byc->bxy", r_flatten, c_history_flatten)attention = F.softmax(scores, dim=2)return torch.einsum("bxy,byc->bxc", attention, c_history_flatten).view(*r.shape)def self_attention_fast(self, r, c_history):# Scaled Dot-Product but for tensors# instead of dot-product we do matrix contraction on twh dimensionsscaling_factor = 1 / (reduce(operator.mul, r.shape[-3:], 1) ** 0.5)scores = torch.einsum("bctwh,lbctwh->bl", r, c_history) * scaling_factorattention = F.softmax(scores, dim=0)return torch.einsum("bl,lbctwh->bctwh", attention, c_history)def forward(self, x, c_history, m, h):# Normalized shape for LayerNorm is CxT×H×Wnormalized_shape = list(h.shape[-3:])def LR(input):# return F.layer_norm(input, normalized_shape)return self.group_norm(input, normalized_shape) # wzj# R is CxT×H×Wr = torch.sigmoid(LR(self.weight_xr(x) + self.weight_hr(h)))i = torch.sigmoid(LR(self.weight_xi(x) + self.weight_hi(h)))g = torch.tanh(LR(self.weight_xg(x) + self.weight_hg(h)))recall = self.self_attention_fast(r, c_history)# nice_print(**locals())# mem_report()# cpu_stats()c = i * g + self.group_norm(c_history[-1] + recall) # wzji_prime = torch.sigmoid(LR(self.weight_xi_prime(x) + self.weight_mi_prime(m)))g_prime = torch.tanh(LR(self.weight_xg_prime(x) + self.weight_mg_prime(m)))f_prime = torch.sigmoid(LR(self.weight_xf_prime(x) + self.weight_mf_prime(m)))m = i_prime * g_prime + f_prime * mo = torch.sigmoid(LR(self.weight_xo(x)+ self.weight_ho(h)+ self.weight_co(c)+ self.weight_mo(m)))h = o * torch.tanh(self.weight_111(torch.cat([c, m], dim=1)))# TODO is it correct FIFO?c_history = torch.cat([c_history[1:], c[None, :]], dim=0)# nice_print(**locals())return (c_history, m, h)def init_hidden(self, batch_size, tau, device=None):memory_shape = list(self._input_shape)memory_shape[0] = self._hidden_sizec_history = torch.zeros(tau, batch_size, *memory_shape, device=device)m = torch.zeros(batch_size, *memory_shape, device=device)h = torch.zeros(batch_size, *memory_shape, device=device)return (c_history, m, h)class ConvDeconv3d(nn.Module):def __init__(self, in_channels, out_channels, *vargs, **kwargs):super().__init__()self.conv3d = nn.Conv3d(in_channels, out_channels, *vargs, **kwargs)# self.conv_transpose3d = nn.ConvTranspose3d(out_channels, out_channels, *vargs, **kwargs)def forward(self, input):# print(self.conv3d(input).shape, input.shape)# return self.conv_transpose3d(self.conv3d(input))return F.interpolate(self.conv3d(input), size=input.shape[-3:], mode="nearest")class Out(nn.Module):def __init__(self, in_channels, out_channels):super().__init__()self.conv = nn.Conv3d(in_channels, out_channels, kernel_size = 3, stride=1, padding=1)def forward(self, x):return self.conv(x)class E3DLSTM_NET(nn.Module):def __init__(self, input_shape, hidden_size, num_layers, kernel_size, tau, time_steps, output_shape):super().__init__()self.input_shape = input_shapeself.hidden_size = hidden_sizeself.num_layers = num_layersself.kernel_size = kernel_sizeself.tau = tauself.time_steps = time_stepsself.output_shape = output_shapeself.dtype = torch.float32self.encoder = E3DLSTM(input_shape, hidden_size, num_layers, kernel_size, tau).type(self.dtype)self.decoder = nn.Conv3d(hidden_size * time_steps, output_shape[0], kernel_size, padding=(0, 2, 2)).type(self.dtype)self.out = Out(4, 1)def forward(self, input_seq):return self.out(self.decoder(self.encoder(input_seq)))# 测试代码
if __name__ == '__main__':input_shape = (16, 4, 16, 16)output_shape = (16, 1, 16, 16)tau = 2hidden_size = 64kernel = (3, 5, 5)lstm_layers = 4time_steps = 29x = torch.ones([29, 2, 16, 4, 16, 16])model = E3DLSTM_NET(input_shape, hidden_size, lstm_layers, kernel, tau, time_steps, output_shape)print('finished!')f = model(x)print(f)
02 论文下载
Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Github链接:e3d_lstm
相关文章:
【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络
文章目录 文章目录 00 写在前面01 基于Pytorch版本的E3D LSTM代码02 论文下载 00 写在前面 测试代码,比较重要,它可以大概判断tensor维度在网络传播过程中,各个维度的变化情况,方便改成适合自己的数据集。 需要github上的数据集…...
C#面:Server.UrlEncode、HttpUtility.UrlDecode的区别
C#中的Server.UrlEncode和HttpUtility.UrlDecode都是用于处理URL编码和解码的方法,它们的区别如下: Server.UrlEncode: Server.UrlEncode是一个静态方法,属于System.Web命名空间。它用于将字符串进行URL编码,将特殊字…...
50.Python-web框架-Django中引入静态的bootstrap样式
目录 Bootstrap 官网 特性 下载 在线样例 Bootstrap 入门 Bootstrap v5 中文文档 v5.3 | Bootstrap 中文网 在django中使用bootstrap 新建static\bootstrap5目录,解压后的Bootstrap文件,拷贝项目里就好。 在template文件里引用css文…...
机器学习实验----支持向量机(SVM)实现二分类
目录 一、介绍 (1)解释算法 (2)数据集解释 二、算法实现和代码介绍 1.超平面 2.分类判别模型 3.点到超平面的距离 4.margin 间隔 5.拉格朗日乘数法KKT不等式 (1)介绍 (2)对偶问题 (3)惩罚参数 (4)求解 6.核函数解决非线性问题 7.SMO (1)更新w (2)更新b 三、代…...
STM32自己从零开始实操05:接口电路原理图
一、TTL 转 USB 驱动电路设计 1.1指路 延续使用芯片 CH340E 。 实物图 实物图 原理图与封装图 1.2数据手册重要信息提炼 1.2.1概述 CH340 是一个 USB 总线的转接芯片,实现 USB 与串口之间的相互转化。 1.2.2特点 支持常用的 MODEM 联络信号 RTS(请…...
git子模块
1 子模块管理的关键文件和配置 在 Git 中使用子模块时,Git 会利用几个特殊的文件和配置来管理子模块。以下是涉及子模块管理的关键文件和配置: 1.1 .gitmodules 这是一个文本文件,位于 Git 仓库的根目录下。它记录了子模块的信息ÿ…...
stm32编写Modbus步骤
1. modbus协议简介: modbus协议基于rs485总线,采取一主多从的形式,主设备轮询各从设备信息,从设备不主动上报。 日常使用都是RTU模式,协议帧格式如下所示: 地址 功能码 寄存器地址 读取寄存器…...
基于 Transformer 的大语言模型
语言建模作为语言模型(LMs)的基本功能,涉及对单词序列的建模以及预测后续单词的分布。 近年来,研究人员发现,扩大语言模型的规模不仅增强了它们的语言建模能力,而且还产生了处理传统NLP任务之外更复杂任务…...
证照之星是一款很受欢迎的证件照制作软件
证照之星是一款很受欢迎的证件照制作软件,证照之星可以为用户提供“照片旋转、裁切、调色、背景处理”等功能,满足用户对证件照制作的基本需求。本站证照之星下载专题为大家提供了证照之星电脑版、安卓版、个人免费版等多个版本客户端资源,此…...
不定时更新 解决无法访问GitHub github.com 打不开 dns访问加速
1 修改hosts Windows 10为例,文件C:\Windows\System32\drivers\etc\hosts 管理员打开记事本来修改 文件-打开-“C:\Windows\System32\drivers\etc\hosts” 20.205.243.168 api.github.com 185.199.108.154 github.githubassets.com 185.199.108.133 raw.githubusercontent.…...
单向环形链表的创建与判断链表是否有环
单向环形链表的创建与单向链表的不同在于,最后一个节点的next需要指向头结点; 判断链表是否带环,只需要使用两个指针,一个步长为1,一个步长为2,环状链表这两个指针总会相遇。 如下示例代码: l…...
JVM堆栈的区别、分配内存与并发安全问题、对象定位
一、堆和栈的区别 堆(Heap)和栈(Stack)是两种基本的数据结构,它们在内存管理、程序执行流程控制等方面扮演着重要角色。在编程语言尤其是Java这样的高级语言环境中,堆和栈的概念被用来描述程序运行时的内存…...
Python教程:机器学习 - 百分位数(4)
什么是百分位数? 统计学中使用百分位数(Percentiles)为您提供一个数字,该数字描述了给定百分比值小于的值。 例如:假设我们有一个数组,包含住在一条街上的人的年龄。 ages [5,31,43,48,50,41,7,11,15,3…...
数据结构习题(快期末了)
一个数据结构是由一个逻辑结构和这个逻辑结构上的一个基本运算集构成的整体。 从逻辑关系上讲,数据结构主要分为线性结构和非线性结构两类。 数据的存储结构是数据的逻辑结构的存储映像。 数据的物理结构是指数据在计算机内实际的存储形式。 算法是对解题方法和…...
Http协议:Http缓存
文章目录 Cookie和Session缓存有效性检查整体流程总结Cookie和Session Cookie 客户端的缓存 Session 服务端的缓存,存储服务器与客户端一次会话的过程中的数据/资源 两者区别 是服务端与客户端的不同需求造成的 有效期 Cookie的有效期很长,Session的较短 原因:服务…...
idea插件开发之hello idea plugin
写在前面 最近一直想研究下自定义idea插件的内容,这样如果是想要什么插件,但又一时找不到合适的,就可以自己来搞啦!这不终于有时间来研究下,但过程可谓是一波三折,再一次切身体验了下万事开头难。那么&…...
Sm4【国密4加密解密】
当我们开发金融、国企、政府信息系统时,不仅要符合网络安全的等保二级、等保三级,还要求符合国密的安全要求,等保测评已经实行很久了,而国密测评近两年才刚开始。那什么是密码/国密?什么是密评?本文就关于密…...
git如果将多次提交压缩成一次
将N个提交压缩到单个提交中有两种方式: git reset git reset的本意是版本回退,回退时可以选择保留commit提交。我们基于git reset的作用,结合新建分支,可以实现多次commit提交的合并。这个不需要vim编辑,很少有冲突。…...
android用Retrofit进行网络请求和解析
Retrofit 的原理 Retrofit的核心原理包括动态代理与Service Method的构建、注解解析与请求配置、网络请求执行与响应处理等。它是一个类型安全的HTTP客户端,用于Android和Java平台,通过将HTTP API转化为Java接口的方式,简化了网络请求的编写…...
list容器的基本使用
目录 前言一,list的介绍二,list的基本使用2.1 list的构造2.2 list迭代器的使用2.3 list的头插,头删,尾插和尾删2.4 list的插入和删除2.5 list 的 resize/swap/clear 前言 list中的接口比较多,与string和vector类似&am…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
