2的n次方表格
做项目的时候有时候会担心数据溢出,常用的数据长度就有8位、16位、32位、64位。相信八位都很容易记住就是256,16位是65536,但是数字一大就记不住了,甚至连换算为十进制是多少位都不得而知。
下表中就有1 ~ 64位数据的范围。
0次方:1
1次方:2
2次方:4
3次方:8
4次方:16
5次方:32
6次方:64
7次方:128
8次方:256
9次方:512
10次方:1024
11次方:2048
12次方:4096
13次方:8192
14次方:16384
15次方:32768
16次方:65536
17次方:131072
18次方:262144
19次方:524288
20次方:1048576
21次方:2097152
22次方:4194304
23次方:8388608
24次方:16777216
25次方:33554432
26次方:67108864
27次方:134217728
28次方:268435456
29次方:536870912
30次方:1073741824
31次方:2147483648
32次方:4294967296
33次方:8589934592
34次方:17179869184
35次方:34359738368
36次方:68719476736
37次方:137438953472
38次方:274877906944
39次方:549755813888
40次方:1099511627776
41次方:2199023255552
42次方:4398046511104
43次方:8796093022208
44次方:17592186044416
45次方:35184372088832
46次方:70368744177664
47次方:140737488355328
48次方:281474976710656
49次方:562949953421312
50次方:1125899906842624
51次方:2251799813685248
52次方:4503599627370496
53次方:9007199254740992
54次方:18014398509481984
55次方:36028797018963968
56次方:72057594037927936
57次方:144115188075855872
58次方:288230376151711744
59次方:576460752303423488
60次方:1152921504606846976
61次方:2305843009213693952
62次方:4611686018427387904
63次方:9223372036854775808
64次方:18446744073709551616
小技巧
有一个记忆2进制的小技巧哦,博主小时候一直就在想为什么手机的1kb不是1000b,而是1024
b,学习了计算机之后才得知,1kb是2^10b。这就很好记忆了吧。2^20次方就是1Mb。
相关文章:
2的n次方表格
做项目的时候有时候会担心数据溢出,常用的数据长度就有8位、16位、32位、64位。相信八位都很容易记住就是256,16位是65536,但是数字一大就记不住了,甚至连换算为十进制是多少位都不得而知。 下表中就有1 ~ 64位数据的范围。 0次…...
EVS9329-ES驱动器EVS9329ES可议价
EVS9329-ES驱动器EVS9329ES可议价 EVS9329-ES驱动器EVS9329ES可议价 EVS9329-ES驱动器EVS9329ES可议价 EVS9329-ES驱动器EVS9329ES可议价 EVS9329-ES驱动器EVS9329ES可议价 EVS9329-ES步进电机按结构分类:步进电动机也叫脉冲电机,包括反应式步进电动…...
JSON、yam|fIProperties
JSON、YAML和Properties都是数据序列化和存储的格式,它们各自有独特的特点和适用场景。 1. JSON (JavaScript Object Notation) : 特点:JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。它基于ECMA…...
关于投标中的合理均价基准差径靶心法(KIMI回答)
投标中的合理靶心法到底是什么呢?用了KIMI来进行回答:...
好久没写文章
好久没写文章...
卡塔尔.巴林:海外媒体投放-宣发.发稿效果显著提高
引言 卡塔尔和巴林两国积极采取措施,通过海外媒体投放和宣发,将本国的商业新闻和相关信息传达给更广泛的受众。在这一过程中,卡塔尔新闻网、巴林商业新闻和摩纳哥新闻网等媒体起到了关键作用。通过投放新闻稿,这些国际化的媒体平…...
【成品设计】基于STM32的单相瞬时值反馈逆变器
《基于STM32的单相瞬时值反馈逆变器》 整体功能: 图13 软件框图 如图13所示,由于本设计中需要通过定时器中断执行一些程序,故首先对中断进行初始化。中断初始化以后即为对串口进行初始化,总共初始化了两个串口,第一个…...
浏览器实时播放摄像头数据并通过 Yolo 进行图像识别
安装 Ultralytics 之后,可以直接通过本地获取摄像头数据流,并通过 Yolo 模型实时进行识别。大多情况下,安装本地程序成本比较高,需要编译打包等等操作,如果可以直接通过浏览器显示视频,并实时显示识别到的对…...
redis清空list
redis list清空 要清空Redis中的list,您可以使用LTRIM命令。Redis Ltrim 对一个列表进行修剪(trim),就是说,让列表只保留指定区间内的元素,不在指定区间之内的元素都将被删除。 下标 0 表示列表的第一个元素,以 1 表示…...
汽车油耗NEDC与WLTP有什么区别?以及MATLAB/Simulink的汽车行驶工况仿真
最近的热点新闻非比亚迪的秦L莫属,其油耗达到2.9L/100km,但其标注为NEDC也引起了讨论, NEDC与WLTP的区别 NEDC的全称为“New European Driving Cycle”,即“新欧洲驾驶循环”。这种油耗测试标准起源于上世纪80年代,主…...
【Python】已解决报错:AttributeError: module ‘json‘ has no attribute ‘loads‘解决办法
😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。 🤓 同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深…...
(5)按钮输入
文章目录 前言 1 基础设置 2 数字逻辑/模拟电压设置 3 PWM输入设置 4 额外设置 前言 连接到自动驾驶仪的最多四个外部按钮或开关可以被配置为触发辅助功能(Auxiliary Functions),类似于 RC 通道开关的触发方式。这些按钮输入可以被配置为使用数字逻辑电平电压…...
嵌入式开发、C++后台开发、C++音视频开发怎么选择?
开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「嵌入式的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!! 嵌入式开发:非常…...
高考志愿填报,大学读什么专业比较好?
高考分数出炉后,选择什么样的专业,如何去选择专业?于毕业生而言是一个难题。因为,就读的专业前景不好,意味着就业情况不乐观,意味着毕业就是失业。 盲目选择专业的确会让自己就业时受挫,也因此…...
33 _ 跨站脚本攻击(XSS):为什么Cookie中有HttpOnly属性?
通过上篇文章的介绍,我们知道了同源策略可以隔离各个站点之间的DOM交互、页面数据和网络通信,虽然严格的同源策略会带来更多的安全,但是也束缚了Web。这就需要在安全和自由之间找到一个平衡点,所以我们默认页面中可以引用任意第三…...
C++入门小结
C命名空间总结 C 中的命名空间(Namespace)是一种组织代码的方式,用于避免全局命名冲突。在同一个命名空间中,可以有相同名称的变量、函数和类,但它们彼此互不影响。下面是对 C 命名空间的一些总结: 定义命…...
Java 开发实例:Spring Boot+AOP+注解+Redis防重复提交(防抖)
文章目录 1. 环境准备2. 引入依赖3. 配置Redis4. 创建防重复提交注解5. 实现AOP切面6. 创建示例Controller7. 测试8. 进一步优化8.1 自定义异常处理8.2 提升Redis的健壮性 9. 总结 🎉欢迎来到Java学习路线专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨…...
使用difflib实现文件差异比较用html显示
1.默认方式,其中加入文本过长,需要换行,因此做 contenthtml_output.replace(</style>,table.diff td {word-wrap: break-word;white-space: pre-wrap;max-width: 100%;}</style>),添加换行操作 ps:当前te…...
【文末附gpt升级秘笈】AI热潮降温与AGI场景普及的局限性
AI热潮降温与AGI场景普及的局限性 摘要: 随着人工智能(AI)技术的迅猛发展,AI热一度席卷全球,引发了广泛的关注和讨论。然而,近期一些学者和行业专家对AI的发展前景提出了质疑,认为AI热潮将逐渐…...
Vue待学习
整个渲染过程了解 Vue实例?Vue模板?渲染函数render()?虚拟DOM VNode?模板编译器?diff算法 CSS相关 CSS高级学习?过渡? 待熟悉掌握 Vue-router?VueX?Vue-Cli、Webpack和…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
【阅读笔记】MemOS: 大语言模型内存增强生成操作系统
核心速览 研究背景 研究问题:这篇文章要解决的问题是当前大型语言模型(LLMs)在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色,但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成(RA…...
今日行情明日机会——20250609
上证指数放量上涨,接近3400点,个股涨多跌少。 深证放量上涨,但有个小上影线,相对上证走势更弱。 2025年6月9日涨停股主要行业方向分析(基于最新图片数据) 1. 医药(11家涨停) 代表标…...
Kafka深度解析与原理剖析
文章目录 一、Kafka核心架构原理1. **分布式协调与选举**2. **ISR、OSR与HW机制**3. **高性能存储设计**4. **刷盘机制 (Flush)**5. **消息压缩算法**二、高可用与消息可靠性保障1. **数据高可用策略**2. **消息丢失场景与规避**3. **顺序消费保证**三、Kafka高频面试题精析1. …...
