当前位置: 首页 > news >正文

[Algorithm][贪心][最长递增子序列][递增的三元子序列][最长连续递增序列][买卖股票的最佳时机][买卖股票的最佳时机Ⅱ]详细讲解

目录

  • 1.最长递增子序列
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.递增的三元子序列
    • 1.题目链接
    • 2.算法原理详解
    • 3.题目链接
  • 3.最长连续递增序列
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.买卖股票的最佳时机
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 5.买卖股票的最佳时机 II
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.最长递增子序列

1.题目链接

  • 最长递增子序列

2.算法原理详解

  • 基本思想

    • 动态规划
    • 二分查找
  • 动态规划思路

    • 状态表示:以i位置的元素为结尾的所有的子序列中,最长递增子序列的长度
    • 状态转移方程dp[i] = max(dp[j] + 1) (j < i && nums[j] < nums[i])
    • 该思路中,并不关心该序列长什么样子,只在乎”最后一个元素”是谁
  • 贪心优化

    • 存什么;所有长度为x的递增子序列中,最后一个元素的最小值
    • 存哪里:所有大于等于nums[i]的最小值的位置
      请添加图片描述
  • 利用二分优化:时间复杂度: O ( N ) O(N) O(N) -> O ( l o g N ) O(log_N) O(logN)
    请添加图片描述


3.代码实现

int lengthOfLIS(vector<int>& nums) 
{int n = nums.size();vector<int> ret;ret.push_back(nums[0]);for(int i = 1; i < n; i++){if(nums[i] > ret.back()){ret.push_back(nums[i]);}else{// 二分插入位置int left = 0, right = ret.size() - 1;while(left < right){int mid = left + (right - left) / 2;if(ret[mid] < nums[i]){left = mid + 1;}else{right = mid;}}ret[left] = nums[i];}}return ret.size();
}

2.递增的三元子序列

1.题目链接

  • 递增的三元子序列

2.算法原理详解

  • 本题的贪心策略和最长递增子序列一样
    • 但是本题只需两个变量即可完成贪心,无需数组
      请添加图片描述

3.题目链接

bool increasingTriplet(vector<int>& nums) 
{int a = nums[0], b = INT_MAX;for(int i = 1; i < nums.size(); i++){if(nums[i] > b){return true;}else if(nums[i] > a){b = nums[i];}else{a = nums[i];}}return false;
}

3.最长连续递增序列

1.题目链接

  • 最长连续递增序列

2.算法原理详解

  • 思路;贪心 + 双指针

3.代码实现

int findLengthOfLCIS(vector<int>& nums) 
{int n = nums.size(), ret = 0;for(int i = 0; i < n; ){int j = i + 1;while(j < n && nums[j - 1] < nums[j]){j++;}ret = max(ret, j - i);i = j; // 贪心}return ret;
}

4.买卖股票的最佳时机

1.题目链接

  • 买卖股票的最佳时机

2.算法原理详解

  • 思路:贪心 + 一个变量标记“前缀最小值”

3.代码实现

int maxProfit(vector<int>& prices) 
{int ret = 0, prevMin = INT_MAX;for(int i = 0; i < prices.size(); i++){if(prices[i] > prevMin){ret = max(ret, prices[i] - prevMin);}prevMin = min(prices[i], prevMin); // 贪心}return ret;
}

5.买卖股票的最佳时机 II

1.题目链接

  • 买卖股票的最佳时机 II

2.算法原理详解

  • 贪心:只要能获得正收益,就交易

  • 实现一:双指针
    请添加图片描述

  • 实现二:拆分交易,把交易拆成一天一天
    请添加图片描述


3.代码实现

// v1.0 双指针
int maxProfit(vector<int>& p) 
{int ret = 0, n = p.size();for(int i = 0; i < n; i++){int j = i;while(j + 1 < n && p[j + 1] > p[j]){j++;}ret += p[j] - p[i];i = j;}return ret;
}
---------------------------------------------------------
// v2.0 拆分成一天一天
int maxProfit(vector<int>& p) 
{int ret = 0;for(int i = 1; i < p.size(); i++){if(p[i - 1] < p[i]){ret += p[i] - p[i - 1];}}return ret;
}

相关文章:

[Algorithm][贪心][最长递增子序列][递增的三元子序列][最长连续递增序列][买卖股票的最佳时机][买卖股票的最佳时机Ⅱ]详细讲解

目录 1.最长递增子序列1.题目链接2.算法原理详解3.代码实现 2.递增的三元子序列1.题目链接2.算法原理详解3.题目链接 3.最长连续递增序列1.题目链接2.算法原理详解3.代码实现 4.买卖股票的最佳时机1.题目链接2.算法原理详解3.代码实现 5.买卖股票的最佳时机 II1.题目链接2.算法…...

手把手教你入门vue+springboot开发(三)--登录功能后端

文章目录 前言一、redis安装二、后端代码1.修改application.yml文件2.增加utils文件3.增加Result类4.修改UserController类5.修改UserMapper类6.修改UserService和UserServiceImpl类7.增加LoginInterceptor类8.增加WebConfig类9.修改pom.xml文件 前言 前两篇我们用vuespringbo…...

三款有3D效果的js图表库

1、G2简洁的渐进式可视化语法。https://g2.antv.antgroup.com/manual/extra-topics/3d-charts 2、 https://www.highcharts.com/https://www.highcharts.com/ 3、https://www.fusioncharts.com/charts/pie-doughnut-charts/donut-chart-in-3d?frameworkjavascripthttps://www…...

【SQLAlChemy】表之间的关系,外键如何使用?

表之间的关系 数据库表之间的关系分为三种&#xff1a; 一对一关系&#xff08;One-to-One&#xff09;&#xff1a;在这种关系中&#xff0c;表A的每一行都与表B的一行关联&#xff0c;反之亦然。例如&#xff0c;每个人都有一个唯一的社保号&#xff0c;每个社保号也只属于…...

Linux 基础IO 二

1.文件描述符的分配规则 #include<stdio.h> #include<string.h> //#include<unistd.h> #include<sys/types.h> #include<sys/stat.h> #include<fcntl.h>int main() {close(1);//fd分配原则&#xff0c;从最小的开始&#xff0c;没有被占用…...

找工作小项目:day15-macOS支持、完善逻辑

macOS支持、完善逻辑 目前的代码可以在Linux上完美运行编译&#xff0c;在Windows上也可以通过WSL编译运行源代码&#xff0c;但是在MacBook上却无法运行编译&#xff0c;这主要是由于macOS上没有epoll&#xff0c;取而代之的很相似的kqueue。由于操作系统不同&#xff0c;我们…...

植物大战僵尸杂交版 v2.0.88 mac版 Plants vs. Zombies 杂交版下载

特别注意&#xff1a;该游戏最低系统要求为macOS Sonoma 14.X&#xff0c;低于此系统版本的请勿下载&#xff01; 游戏介绍 植物大战僵尸杂交版是由B站UP主“潜艇伟伟迷”制作的一款结合了《植物大战僵尸》原有元素与创新玩法的游戏。这款游戏以其独特的“杂交”植物概念在B站…...

PHP中的while循环:用法、技巧与最佳实践

在PHP编程中&#xff0c;while循环是一种基本且常用的控制结构&#xff0c;用于重复执行代码块&#xff0c;直到指定条件为假。while循环在处理未知迭代次数的任务时特别有用&#xff0c;例如读取文件内容、处理用户输入或动态生成数据等。与for循环不同&#xff0c;while循环适…...

如何解决跨境传输常见的安全及效率问题?

在当今全球化的商业版图中&#xff0c;企业为了拓展国际市场和增强竞争力&#xff0c;跨境传输数据已成为一项不可或缺的业务活动。合格的数据跨境传输方案&#xff0c;应考虑以下要素&#xff1a; 法律合规性&#xff1a;确保方案符合所有相关国家的数据保护法律和国际法规&am…...

『大模型笔记』主成分分析(PCA)解释:简化机器学习中的复杂数据!

主成分分析(PCA)解释:简化机器学习中的复杂数据 文章目录 一. 主成分分析(PCA)解释:简化机器学习中的复杂数据!二. 参考文献一. 主成分分析(PCA)解释:简化机器学习中的复杂数据! 主成分分析(Principal Component Analysis,简称PCA)通过 将大型数据集中的维度减少…...

springboot与flowable(5):任务分配(表达式)

在做流程定义时我们需要给相关的用户节点指派对应的处理人。在flowable中提供了三种分配的方式。 一、固定分配 在分配用户时选择固定值选项确认即可。 二、表达式 1、值表达式 2、方法表达式 三、表达式流程图测试 1、导出并部署 导出流程图&#xff0c;复制到项目中 部署流…...

如何使用CCS9.3打开CCS3.0工程

如何使用CCS9.3打开CCS3.0工程 点菜单栏上的project&#xff0c;选择Import Legacy CCSv3.3 Porjects…&#xff0c;弹出对话框&#xff0c;通过Browse…按钮导入一个3.3版本的工程项目&#xff1b; 选择.pjt文件&#xff0c;选择Copy projects into worlkspace 右击选择P…...

Stable Diffusion 3 Medium 模型

开源SD3&#xff0c;中型版本&#xff0c;20亿参数&#xff0c;Stable Diffusion 3 Medium&#xff0c;系统内存要求32G&#xff0c;显卡6G。 a female character with long, flowing hair that appears to be made of ethereal, swirling patterns resembling the Northern Li…...

数据分析------统计学知识点(五)

回归算法 想象一下&#xff0c;你和朋友在讨论:大学生活中&#xff0c;每天学习的时间是否真的能影响期末成绩?这个问题看似简单&#xff0c;实则包含了一个潜在的关系:学习时间与成绩之间的联系。我们想要知道&#xff0c;增加学习时间是否会提高成绩&#xff0c;以及这种提…...

Superset二次开发之Git篇 git remote

背景:从GitHub clone Superset项目,基于3.0版本做二次开发,后续通过其他方式把3.0版本未做任何修改过的原始代码上传到企业GitLab库develop分支 任务:本地代码推送到GitLab库develop分支,但是两者似乎没有任何关联关系 操作步骤 克隆 Superset 3.0 版本的项目到本地: …...

记录一下PHP使用微信小程序支付

记录一下PHP使用微信小程序支付V3版本经历 官方文档&#xff1a;https://pay.weixin.qq.com/wiki/doc/apiv3/open/pay/chapter2_8_0.shtml 请详细查看文档中小程序支付接入前准备&#xff08;https://pay.weixin.qq.com/wiki/doc/apiv3/open/pay/chapter2_8_1.shtml&#xff…...

【数据结构初阶】 --- 单链表

关于链表你应该先了解这些 下图描述了物理模型和逻辑模型&#xff0c;大多数常见的其实是逻辑模型&#xff0c;但这对初学者或者掌握不扎实的同学不太友好&#xff0c;所以这里我重点讲解物理模型&#xff0c;当了解了这些细节&#xff0c;以后做题或是什么就直接画逻辑模型就…...

并发、多线程、HTTP连接数有何关系?

在计算机领域&#xff0c;"并发"、"多线程"和"HTTP连接数"是三个重要的概念&#xff0c;它们之间存在着密切的关系。本文将探讨这三者之间的联系以及它们在现代计算机系统中的作用。 一、并发的概念 并发是指系统能够同时处理多个任务或事件的能…...

鸿蒙轻内核Kconfig使用笔记

鸿蒙轻内核使用Kconfig进行图形化配置&#xff0c;本文专门讲解下鸿蒙轻内核LiteOS-M和LiteOS-A的图形化配置方法。本文中所涉及的源码&#xff0c;均可以在开源站点 https://gitee.com/openharmony/kernel_liteos_a 、 https://gitee.com/openharmony/kernel_liteos_m 获取。本…...

react 0至1 案例

/*** 导航 Tab 的渲染和操作** 1. 渲染导航 Tab 和高亮* 2. 评论列表排序* 最热 > 喜欢数量降序* 最新 > 创建时间降序* 1.点击记录当前type* 2.通过记录type和当前list中的type 匹配*/ import ./App.scss import avatar from ./images/bozai.png import {useState} …...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001

qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类&#xff0c;直接把源文件拖进VS的项目里&#xff0c;然后VS卡住十秒&#xff0c;然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分&#xff0c;导致编译的时候找不到了。因…...

五、jmeter脚本参数化

目录 1、脚本参数化 1.1 用户定义的变量 1.1.1 添加及引用方式 1.1.2 测试得出用户定义变量的特点 1.2 用户参数 1.2.1 概念 1.2.2 位置不同效果不同 1.2.3、用户参数的勾选框 - 每次迭代更新一次 总结用户定义的变量、用户参数 1.3 csv数据文件参数化 1、脚本参数化 …...

基于Python的气象数据分析及可视化研究

目录 一.&#x1f981;前言二.&#x1f981;开源代码与组件使用情况说明三.&#x1f981;核心功能1. ✅算法设计2. ✅PyEcharts库3. ✅Flask框架4. ✅爬虫5. ✅部署项目 四.&#x1f981;演示效果1. 管理员模块1.1 用户管理 2. 用户模块2.1 登录系统2.2 查看实时数据2.3 查看天…...

开疆智能Ethernet/IP转Modbus网关连接鸣志步进电机驱动器配置案例

在工业自动化控制系统中&#xff0c;常常会遇到不同品牌和通信协议的设备需要协同工作的情况。本案例中&#xff0c;客户现场采用了 罗克韦尔PLC&#xff0c;但需要控制的变频器仅支持 ModbusRTU 协议。为了实现PLC 对变频器的有效控制与监控&#xff0c;引入了开疆智能Etherne…...

生成对抗网络(GAN)损失函数解读

GAN损失函数的形式&#xff1a; 以下是对每个部分的解读&#xff1a; 1. ⁡, ​ &#xff1a;这个部分表示生成器&#xff08;Generator&#xff09;G的目标是最小化损失函数。 &#xff1a;判别器&#xff08;Discriminator&#xff09;D的目标是最大化损失函数。 GAN的训…...