当前位置: 首页 > news >正文

航拍无人机像素坐标转世界坐标

一、背景

已知相机参数(传感器宽度和高度、图像宽度和高度、焦距、相对航高、像主点坐标 ),在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,不知道哪个步骤有问题,望大家指正

二、代码
import numpy as np
import cv2
# 畸变校正
def undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist):
    k0,k1,k2,k3=sym_dist
    # k1, k2, p1, p2, k3 = sym_dist
    p1,p2,p3=dec_dist
    fx = focal_length_mm
    fy = focal_length_mm
    cx = xpoff_px
    cy = ypoff_px
    distCoeffs = np.array([k1, k2, p1, p2,k3])
    cameraMatrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    distorted_points = np.array([[pixel_x, pixel_y]], dtype=np.float32)
    undistorted_points = cv2.undistortPoints(distorted_points, cameraMatrix, distCoeffs)
    #################################################### 4\对图像去畸变
    img = cv2.imread('./images/100_0004_0001.JPG')
    img_undistored = cv2.undistort(img, cameraMatrix, distCoeffs)
    cv2.imwrite('./images/100_0004_00011.JPG', img_undistored)
    return undistorted_points[0][0][0], undistorted_points[0][0][1]
# 相机坐标转世界坐标
def camera_to_world_coordinates(cam_coords, pos):
    # 获取相机到世界的转换参数
    pos_x, pos_y, pos_z, roll, pitch, yaw = pos
    # 将角度转换为弧度
    roll = np.radians(roll)
    pitch = np.radians(pitch)
    yaw = np.radians(yaw)
    # 计算旋转矩阵
    R_roll = np.array([
        [1, 0, 0],
        [0, np.cos(roll), -np.sin(roll)],
        [0, np.sin(roll), np.cos(roll)]
    ])
    R_pitch = np.array([
        [np.cos(pitch), 0, np.sin(pitch)],
        [0, 1, 0],
        [-np.sin(pitch), 0, np.cos(pitch)]
    ])
    R_yaw = np.array([
        [np.cos(yaw), -np.sin(yaw), 0],
        [np.sin(yaw), np.cos(yaw), 0],
        [0, 0, 1]
    ])
    R = R_yaw @ R_pitch @ R_roll
    # 相机坐标转换到世界坐标
    cam_coords_homogeneous = np.array([cam_coords[0], cam_coords[1], -H, 1])
    world_coords = R @ cam_coords_homogeneous[:3] + np.array([pos_x, pos_y, pos_z])
    return world_coords
if __name__ == "__main__":


取消
首页
编程
手机
软件
硬件
安卓
苹果
手游
教程
平面
服务器
首页 > 脚本专栏 > python > python无人机航拍图片像素坐标
python实现无人机航拍图片像素坐标转世界坐标的示例代码
2024-06-12 10:42:38 作者:GIS从业者

已知相机参数在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,本文给大家分享实现脚本,感兴趣的朋友跟随小编一起看看吧
背景
已知相机参数(传感器宽度和高度、图像宽度和高度、焦距、相对航高、像主点坐标 ),在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,不知道哪个步骤有问题,望大家指正

脚本
import numpy as np
import cv2
# 畸变校正
def undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist):
    k0,k1,k2,k3=sym_dist
    # k1, k2, p1, p2, k3 = sym_dist
    p1,p2,p3=dec_dist
    fx = focal_length_mm
    fy = focal_length_mm
    cx = xpoff_px
    cy = ypoff_px
    distCoeffs = np.array([k1, k2, p1, p2,k3])
    cameraMatrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    distorted_points = np.array([[pixel_x, pixel_y]], dtype=np.float32)
    undistorted_points = cv2.undistortPoints(distorted_points, cameraMatrix, distCoeffs)
    #################################################### 4\对图像去畸变
    img = cv2.imread('./images/100_0004_0001.JPG')
    img_undistored = cv2.undistort(img, cameraMatrix, distCoeffs)
    cv2.imwrite('./images/100_0004_00011.JPG', img_undistored)
    return undistorted_points[0][0][0], undistorted_points[0][0][1]
# 相机坐标转世界坐标
def camera_to_world_coordinates(cam_coords, pos):
    # 获取相机到世界的转换参数
    pos_x, pos_y, pos_z, roll, pitch, yaw = pos
    # 将角度转换为弧度
    roll = np.radians(roll)
    pitch = np.radians(pitch)
    yaw = np.radians(yaw)
    # 计算旋转矩阵
    R_roll = np.array([
        [1, 0, 0],
        [0, np.cos(roll), -np.sin(roll)],
        [0, np.sin(roll), np.cos(roll)]
    ])
    R_pitch = np.array([
        [np.cos(pitch), 0, np.sin(pitch)],
        [0, 1, 0],
        [-np.sin(pitch), 0, np.cos(pitch)]
    ])
    R_yaw = np.array([
        [np.cos(yaw), -np.sin(yaw), 0],
        [np.sin(yaw), np.cos(yaw), 0],
        [0, 0, 1]
    ])
    R = R_yaw @ R_pitch @ R_roll
    # 相机坐标转换到世界坐标
    cam_coords_homogeneous = np.array([cam_coords[0], cam_coords[1], -H, 1])
    world_coords = R @ cam_coords_homogeneous[:3] + np.array([pos_x, pos_y, pos_z])
    return world_coords
if __name__ == "__main__":
    ####################################################基本参数
    # 传感器宽度和高度(毫米)
   sensor_width_mm = 12.83331744000000007588
    sensor_height_mm = 8.55554496000000064271
    # 图像宽度和高度(像素)
    image_width_px = 5472
    image_height_px = 3648
    # 焦距(毫米)
    focal_length_mm = 8.69244671863242679422
    # 焦距(米)
    focal_length_m = 8.69244671863242679422/1000
    # 相对航高(米)
    H=86.93
    #像主点坐标 (像素)
    xpoff_px=20.88973563438230485190
    ypoff_px=50.51977022866981315019
    #################################################### 1\计算空间分辨率
    # 传感器尺寸转换为米
    sensor_width_m = sensor_width_mm / 1000
    sensor_height_m = sensor_height_mm / 1000
    # 计算水平和垂直的 GSD
    GSD_x = (sensor_width_m/image_width_px) * (H / focal_length_m )
    GSD_y = (sensor_height_m /image_height_px) * (H / focal_length_m)
    # 水平和垂直方向的 GSD
    print("水平方向的 GSD:", GSD_x, "米/像素")
    print("垂直方向的 GSD:", GSD_y, "米/像素")
    #################################################### 2\给定像素坐标,计算相机坐标
    # 像素坐标
    oripixel_x = image_width_px
    oripixel_y = image_height_px
    # oripixel_x = image_width_px/2
    # oripixel_y = image_height_px/2
    # oripixel_x = 0
    # oripixel_y = 0
    pixel_x=oripixel_x-xpoff_px-image_width_px/2
    pixel_y=oripixel_y-ypoff_px-image_height_px/2
    # 计算相机坐标(假设无畸变)
    camera_x = pixel_x * GSD_x
    camera_y = pixel_y * GSD_y
    print("像素坐标 (", oripixel_x, ",", oripixel_y, ") 对应的相机坐标 (x, y): (", camera_x, "米, ", camera_y, "米)")
    #################################################### 3\计算畸变后坐标
    # 对称畸变系数
    sym_dist = [0, -0.00043396118129128110, 0.00000262222711982075, -0.00000001047488706013]
    # 径向畸变
    dec_dist = [0.00000205885592671873, -0.00000321714140091248, 0]
    # 进行畸变校正
    undistorted_camera_x, undistorted_camera_y = undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist)
    print("畸变校正后像素坐标 (", oripixel_x, ",", oripixel_y, ") 对应的相机坐标 (x, y): (", undistorted_camera_x, "米, ", undistorted_camera_y, "米)")
    #################################################### 4\计算世界坐标
    # POS数据
    pos = [433452.054688, 2881728.519704, 183.789696, 0.648220, -0.226028, 14.490357]
    # 计算世界坐标
    world_coords = camera_to_world_coordinates((undistorted_camera_x, undistorted_camera_y), pos)
    print("旋转平移变换后像素坐标 (", oripixel_x, ",", oripixel_y, ") 对应的世界坐标 (x, y): (", world_coords[0], "米, ", world_coords[1], "米)")
到此这篇关于python实现无人机航拍图片像素坐标转世界坐标的示例代码的文章就介绍到这了。

相关文章:

航拍无人机像素坐标转世界坐标

一、背景 已知相机参数(传感器宽度和高度、图像宽度和高度、焦距、相对航高、像主点坐标 ),在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,不知道哪个步骤有问题,望大家指正 二、代码…...

Linux系统学习——指令二

Linux系统学习——指令二 sed 指令perl 指令rpm 指令rz 和 sz 指令查看文件大小及压缩文件指令使用tar命令:使用zip命令:注意事项: 解压文件指令 sed 指令 使用sed命令:sed -i s/旧内容/新内容/g 文件名,这将会在文件…...

【逻辑回归】和【线性回归】的区别和联系-九五小庞

逻辑回归(Logistic Regression)和线性回归(Linear Regression)是两种常用的统计学习和机器学习技术,它们各自具有特定的应用场景和优势。以下是它们之间的主要区别和联系: 定义与目的 线性回归&#xff1a…...

富格林:正视欺诈阻挠交易被骗

富格林指出,在交易的过程中,投资者们就算做了十分的把握,也难免会出现亏损。因此建议新手投资者,在准备投资时一定要做好充分的准备工作,明辨欺诈陷阱,同时学习正规的做单盈利技巧,这才能帮助我…...

如何在WPS中加载EndNote X9插件

如何在WPS中加载EndNote X9插件 步骤1:关闭WPS 确保所有WPS文档和窗口都已关闭。 步骤2:修改文件后缀 打开文件资源管理器,导航到路径:C:\Program Files (x86)\EndNote X9\Product-Support\CWYW。找到文件 Cwyw_X86.dat&#…...

vb.net小demo(计算器、文件处理等/C#也可看)

Demo1:使用窗体控件实现一个简易版计算器 Public Class Form1Private Sub Button_1_Click(sender As Object, e As EventArgs) Handles Button_1.ClickCalSubBox.Text Button_1.TextEnd SubPrivate Sub Button_2_Click(sender As Object, e As EventArgs) Handles …...

【vue3|第8期】深入理解Vue 3 computed计算属性

日期:2024年6月10日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方&#xf…...

《精通ChatGPT:从入门到大师的Prompt指南》附录C:专业术语表

附录C:专业术语表 本附录旨在为读者提供一本全面的术语表,帮助理解《精通ChatGPT:从入门到大师的Prompt指南》中涉及的各种专业术语。无论是初学者还是高级用户,这些术语的定义和解释将为您在使用ChatGPT时提供重要参考。 A AI&…...

YOLOv8可视化界面PYQT5

yolov8,可视化界面pyqt。支持图片检测,视频检测,摄像头检测等,实时显示检测画面。支持自定义数据集,计数,fps展示……,即插即用,无需更改太多代码...

远程代码执行和远程命令执行是一个东西吗

远程代码执行(Remote Code Execution,简称RCE)和远程命令执行在概念上有所区别,但两者都涉及到攻击者通过远程方式在目标系统上执行代码或命令。以下是两者的详细比较: 定义: 远程代码执行(RCE…...

C++ 20新特性之线程与jthread

💡 如果想阅读最新的文章,或者有技术问题需要交流和沟通,可搜索并关注微信公众号“希望睿智”。 为什么要引入jthread 在C 11中,已经引入了std::thread。std::thread为C标准库带来了一流的线程支持,极大地促进了多线程…...

赶紧收藏!2024 年最常见 20道并发编程面试题(七)

上一篇地址:赶紧收藏!2024 年最常见 20道并发编程面试题(六)-CSDN博客 十三、什么是线程局部存储(Thread-Local Storage)? 线程局部存储(Thread-Local Storage,简称TLS…...

HAL库开发--第一盏灯

知不足而奋进 望远山而前行 目录 文章目录 前言 学习目标 学习内容 需求 开发流程 项目创建 芯片配置 功能配置 时钟配置 项目配置 编写代码 编译测试 烧录失败解决 ​编辑 总结 前言 在嵌入式系统开发中,掌握HAL库开发流程、STMCubeMX配置过程以及…...

Linux C语言:变量的作用域和生命周期(auto、register、static和extern)

一、变量存储类型-auto 1、auto变量的说明 变量在程序中使用时,必须预先说明它们的存储类型和数据类型。 变量说明的一般形式是&#xff1a; <存储类型> <数据类型 > <变量名> &#xff1b; <存储类型>是关键词auto、register、static和extern<…...

AI Stable diffusion 报错:稳定扩散模型加载失败,退出

可能是内存不够&#xff0c;看看你最近是加了新的大的模型&#xff0c;可以把你的stable-diffusion-webui\models\Stable-diffusion目录下的某个ckpt删除掉&#xff0c;可能ckpt太大&#xff0c;无法加载成功&#xff1b; Stable diffusion model failed to load, exiting 如图…...

[Python学习篇] Python循环语句

while 循环 语法&#xff1a; while 条件: 条件成立后会重复执行的代码 ...... 示例1&#xff1a;死循环 # 这是一个死循环示例 while True:print("我正在重复执行")示例2&#xff1a;循环指定次数 i 1 while i < 5:print(f"执行次数 {i}")…...

MongoDB 正则表达式

MongoDB 正则表达式 MongoDB 是一个流行的 NoSQL 数据库&#xff0c;它提供了强大的查询功能&#xff0c;包括对正则表达式的支持。正则表达式是一种强大的文本搜索工具&#xff0c;它允许用户根据特定的模式匹配和搜索字符串。在 MongoDB 中&#xff0c;正则表达式可以用于查…...

Django配置连接池:使用django-db-connection-pool配置连接池

一、该三方库文档使用 github地址&#xff1a; https://github.com/altairbow/django-db-connection-pool/blob/1.2.5/README_CN.mdhttps://github.com/altairbow/django-db-connection-pool/blob/1.2.5/README_CN.md1、选择指定版本&#xff0c;查看指定版本的文档和配置&am…...

SpringBoot整合钉钉实现消息推送

前言 钉钉作为一款企业级通讯工具&#xff0c;具有广泛的应用场景&#xff0c;包括但不限于团队协作、任务提醒、工作汇报等。 通过Spring Boot应用程序整合钉钉实现消息推送&#xff0c;我们可以实现以下功能&#xff1a; 实时向指定用户或群组发送消息通知。自定义消息内容…...

【机器学习】集成学习方法:Bagging与Boosting的应用与优势

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 引言一、集成学习的定义二、Bagging方法1. 随机森林&#xff08;Random Forest&#xff09;2. 其他Bagging方法 二、Boosting方法1. 梯度提升树&#xff08;Gradient Boosting Machine, GBM&#xff09;解释GBM的基本原理和…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...