当前位置: 首页 > news >正文

Opencv数一数有多少个水晶贴纸?

1.目标-数出有多少个贴纸

好久没更新博客了,最近家里小朋友在一张A3纸上贴了很多水晶贴纸,要让我帮他数有多少个,看上去有点多,贴的也比较随意,于是想着使用Opencv来识别一下有多少个。

原图如下: 

代码:

import cv2
import numpy as np
from matplotlib import pyplot as pltdef count_stars(image_path):# 读取图像image = cv2.imread(image_path)# # 显示原始图像# plt.figure()# plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))# plt.title('Original Image')# 转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# # 显示灰度图像# plt.figure()# plt.imshow(gray, cmap='gray')# plt.title('Gray Image')# 应用高斯模糊以减少噪声gs=85blurred = cv2.GaussianBlur(gray, (gs, gs), 0)# # 显示高斯模糊后的图像# plt.figure()# plt.imshow(blurred, cmap='gray')# plt.title('Blurred Image')# # plt.show()# 使用自适应阈值进行二值化binary = cv2.adaptiveThreshold(blurred, 255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV, 125, 2)# 显示二值化后的图像plt.figure()plt.imshow(binary, cmap='gray')plt.title('Binary Image')plt.show()# 查找轮廓contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)# 绘制轮廓contour_image = np.copy(image)cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 3)# 计数星星(即轮廓的数量)star_count = len(contours)# 显示带有轮廓的图像plt.figure()plt.imshow(cv2.cvtColor(contour_image, cv2.COLOR_BGR2RGB))plt.title('Image with Contours'+str(star_count))plt.show()return star_count# 图像路径
image_path = '202406150928253.jpg'# 计算星星数量
num_stars = count_stars(image_path)
print(f'Number of stars: {num_stars}')

2.使用原图计算效果

有很多斑点干扰了统计结果。

3.图像优化处理

对图像进行优化处理再进行计算。使用PS工具对图像背景进行去除。

PS处理之后的图(魔术橡皮擦擦掉背景)),有些透明水晶贴纸和背景色接近被处理了一部分。

最后的结果没有进行人工确认,不过看上去基本是正确的。有兴趣的朋友可以比对一下。

仔细看左上角有点问题,多了一些,擦除后重新计算得到209个,家里小朋友数的202个。

相关文章:

Opencv数一数有多少个水晶贴纸?

1.目标-数出有多少个贴纸 好久没更新博客了,最近家里小朋友在一张A3纸上贴了很多水晶贴纸,要让我帮他数有多少个,看上去有点多,贴的也比较随意,于是想着使用Opencv来识别一下有多少个。 原图如下: 代码…...

AI Agent智能应用从0到1定制开发(完结)

在数字化时代的浪潮中,人工智能(AI)代理智能应用如同星辰般璀璨,引领着技术革新的潮流。从零开始定制开发一款AI Agent智能应用,就像是在无垠的宇宙中绘制一颗新星的轨迹,每一步都充满了挑战与创新的火花。…...

事件驱动架构:新时代的软件设计范式

引言 在现代软件开发中,随着系统复杂度的增加和实时响应需求的提升,传统的单体架构和同步调用模型逐渐显露出其局限性。事件驱动架构(Event-Driven Architecture, EDA)作为一种高度解耦、灵活性强的架构设计模式,越来…...

【机器学习】机器学习与物流科技在智能配送中的融合应用与性能优化新探索

文章目录 引言机器学习与物流科技的基本概念机器学习概述监督学习无监督学习强化学习 物流科技概述路径优化车辆调度需求预测 机器学习与物流科技的融合应用实时物流数据分析数据预处理特征工程 路径优化与优化模型训练模型评估 车辆调度与优化深度学习应用 需求预测与优化强化…...

web前端何去何从:探索未来之路

web前端何去何从:探索未来之路 在数字化浪潮的推动下,web前端技术正经历着前所未有的变革。随着新技术的不断涌现和用户体验的持续提升,web前端开发者们面临着前所未有的挑战与机遇。那么,web前端究竟何去何从?本文将…...

yolov8通过训练完成的模型生成图片热力图--论文需要

源代码来自于网络 使用pytorch_grad_cam,对特定图片生成热力图结果。 安装热力图工具 pip install pytorch_grad_cam pip install grad-cam# get_params中的参数: # weight: # 模型权重文件,代码默认是yolov8m.pt # c…...

Java数据结构之ArrayList(如果想知道Java中有关ArrayList的知识点,那么只看这一篇就足够了!)

前言:ArrayList是Java中最常用的动态数组实现之一,它提供了便捷的操作接口和灵活的扩展能力,使得在处理动态数据集合时非常方便。本文将深入探讨Java中ArrayList的实现原理、常用操作以及一些使用场景。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨…...

Zadig vs. Jenkins 详细比较

01、Zadig vs. Jenkins:关于时代的选择 最近官方公众号发布了一篇名为 《是时候和 Jenkins 说再见了》的文章,引起了社区的广泛关注和讨论。作为曾经最被广泛使用的持续构建交付工具,Jenkins 的江湖地位似乎被挑战了。评论中有一条被高度点赞…...

航拍无人机像素坐标转世界坐标

一、背景 已知相机参数(传感器宽度和高度、图像宽度和高度、焦距、相对航高、像主点坐标 ),在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,不知道哪个步骤有问题,望大家指正 二、代码…...

Linux系统学习——指令二

Linux系统学习——指令二 sed 指令perl 指令rpm 指令rz 和 sz 指令查看文件大小及压缩文件指令使用tar命令:使用zip命令:注意事项: 解压文件指令 sed 指令 使用sed命令:sed -i s/旧内容/新内容/g 文件名,这将会在文件…...

【逻辑回归】和【线性回归】的区别和联系-九五小庞

逻辑回归(Logistic Regression)和线性回归(Linear Regression)是两种常用的统计学习和机器学习技术,它们各自具有特定的应用场景和优势。以下是它们之间的主要区别和联系: 定义与目的 线性回归&#xff1a…...

富格林:正视欺诈阻挠交易被骗

富格林指出,在交易的过程中,投资者们就算做了十分的把握,也难免会出现亏损。因此建议新手投资者,在准备投资时一定要做好充分的准备工作,明辨欺诈陷阱,同时学习正规的做单盈利技巧,这才能帮助我…...

如何在WPS中加载EndNote X9插件

如何在WPS中加载EndNote X9插件 步骤1:关闭WPS 确保所有WPS文档和窗口都已关闭。 步骤2:修改文件后缀 打开文件资源管理器,导航到路径:C:\Program Files (x86)\EndNote X9\Product-Support\CWYW。找到文件 Cwyw_X86.dat&#…...

vb.net小demo(计算器、文件处理等/C#也可看)

Demo1:使用窗体控件实现一个简易版计算器 Public Class Form1Private Sub Button_1_Click(sender As Object, e As EventArgs) Handles Button_1.ClickCalSubBox.Text Button_1.TextEnd SubPrivate Sub Button_2_Click(sender As Object, e As EventArgs) Handles …...

【vue3|第8期】深入理解Vue 3 computed计算属性

日期:2024年6月10日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方&#xf…...

《精通ChatGPT:从入门到大师的Prompt指南》附录C:专业术语表

附录C:专业术语表 本附录旨在为读者提供一本全面的术语表,帮助理解《精通ChatGPT:从入门到大师的Prompt指南》中涉及的各种专业术语。无论是初学者还是高级用户,这些术语的定义和解释将为您在使用ChatGPT时提供重要参考。 A AI&…...

YOLOv8可视化界面PYQT5

yolov8,可视化界面pyqt。支持图片检测,视频检测,摄像头检测等,实时显示检测画面。支持自定义数据集,计数,fps展示……,即插即用,无需更改太多代码...

远程代码执行和远程命令执行是一个东西吗

远程代码执行(Remote Code Execution,简称RCE)和远程命令执行在概念上有所区别,但两者都涉及到攻击者通过远程方式在目标系统上执行代码或命令。以下是两者的详细比较: 定义: 远程代码执行(RCE…...

C++ 20新特性之线程与jthread

💡 如果想阅读最新的文章,或者有技术问题需要交流和沟通,可搜索并关注微信公众号“希望睿智”。 为什么要引入jthread 在C 11中,已经引入了std::thread。std::thread为C标准库带来了一流的线程支持,极大地促进了多线程…...

赶紧收藏!2024 年最常见 20道并发编程面试题(七)

上一篇地址:赶紧收藏!2024 年最常见 20道并发编程面试题(六)-CSDN博客 十三、什么是线程局部存储(Thread-Local Storage)? 线程局部存储(Thread-Local Storage,简称TLS…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

Vue 3 + WebSocket 实战:公司通知实时推送功能详解

📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...

2.3 物理层设备

在这个视频中,我们要学习工作在物理层的两种网络设备,分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间,需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质,假设A节点要给…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...