当前位置: 首页 > news >正文

ccc-pytorch-LSTM(8)

文章目录

      • 一、LSTM简介
      • 二、LSTM中的核心结构
      • 三、如何解决RNN中的梯度消失/爆炸问题
      • 四、情感分类实战(google colab)

一、LSTM简介

LSTM(long short-term memory)长短期记忆网络,RNN的改进,克服了RNN中“记忆低下”的问题。通过“门”结构实现信息的添加和移除,通过记忆元将序列处理过程中的相关信息一直传递下去,经典结构如下:
image-20230309212516534
img

二、LSTM中的核心结构

记忆元(memory cell)-长期记忆:
在这里插入图片描述
就像一个cell一样,信息通过这条只有少量线性交互的线传递。传递过程中有3种“门”结构可以告诉它该学习或者保存哪些信息
三个门结构-短期记忆
遗忘门:用来决定当前状态哪些信息被移除
img
输入门:决定放入哪些信息到细胞状态
img
输出门:决定哪些信息用于输出
img
细节注意

  • 新的细胞状态只需要遗忘门和输入门就可以更新,公式为:Ct=ft∗Ct−1+it∗Ct~C_t=f_t*C_{t-1}+i_t* \tilde{C_t}Ct=ftCt1+itCt~(注意所有的∗*都表示Hadamard 乘积)
  • 只有隐状态h_t会传递到输出层,记忆元完全属于内部信息,不可手动修改

三、如何解决RNN中的梯度消失/爆炸问题

解决是指很大程度上缓解,不是让它彻底消失。先解释RNN为什么会有这些问题:
∂Lt∂U=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂U∂Lt∂W=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂W\begin{aligned} &\frac{\partial L_t}{\partial U}= \sum_{k=0}^{t}\frac{\partial L_t}{\partial O_t}\frac{\partial O_t}{\partial S_t}(\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}})\frac{\partial S_k}{\partial U}\\&\frac{\partial L_t}{\partial W}= \sum_{k=0}^{t}\frac{\partial L_t}{\partial O_t}\frac{\partial O_t}{\partial S_t}(\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}})\frac{\partial S_k}{\partial W} \end{aligned} ULt=k=0tOtLtStOt(j=k+1tSj1Sj)USkWLt=k=0tOtLtStOt(j=k+1tSj1Sj)WSk(具体过程可以看这里)

上面是训练过程任意时刻更新W、U需要用到的求偏导的结果。实际使用会加上激活函数,通常为tanh、sigmoid等
tanh和其导数图像如下
image-20230310195342380
sigmoid和其导数如下
image-20230310195246812
这些激活函数的导数都比1要小,又因为∏j=k+1t∂Sj∂Sj−1=∏j=k+1ttanh′(Ws)\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}}=\prod_{j=k+1}^{t}tanh'(W_s)j=k+1tSj1Sj=j=k+1ttanh(Ws),所以当WsW_sWs过小过大就会分别造成梯度消失和爆炸的问题,特别是过小。
LSTM如何缓解
由链式法则和三个门的公式可以得到:
∂Ct∂Ct−1=∂Ct∂ft∂ft∂ht−1∂ht−1∂Ct−1+∂Ct∂it∂it∂ht−1∂ht−1∂Ct−1+∂Ct∂Ct~∂Ct~∂ht−1∂ht−1∂Ct−1+∂Ct∂Ct−1=Ct−1σ′(⋅)Wf∗ot−1tanh′(Ct−1)+Ct~σ′(⋅)Wi∗ot−1tanh′(Ct−1)+ittanh′(⋅)Wc∗ot−1tanh′(Ct−1)+ft\begin{aligned} &\frac{\partial C_t}{\partial C_{t-1}}\\&=\frac{\partial C_t}{\partial f_t}\frac{\partial f_t}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial i_t}\frac{\partial i_t}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial \tilde{C_t}}\frac{\partial \tilde{C_t}}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial C_{t-1}}\\ &=C_{t-1}\sigma '(\cdot)W_f*o_{t-1}tanh'(C_{t-1})+\tilde{C_t}\sigma '(\cdot)W_i*o_{t-1}tanh'(C_{t-1})\\&+i_ttanh'(\cdot)W_c*o_{t-1}tanh'(C_{t-1})+f_t \end{aligned}Ct1Ct=ftCtht1ftCt1ht1+itCtht1itCt1ht1+Ct~Ctht1Ct~Ct1ht1+Ct1Ct=Ct1σ()Wfot1tanh(Ct1)+Ct~σ()Wiot1tanh(Ct1)+ittanh()Wcot1tanh(Ct1)+ft

  • 由相乘变成了相加,不容易叠加
  • sigmoid函数使单元间传递结果非常接近0或者1,使模型变成非线性,并且可以在学习过程中内部调整

四、情感分类实战(google colab)

环境和库:

!pip install torch
!pip install torchtext
!python -m spacy download en# K80 gpu for 12 hours
import torch
from torch import nn, optim
from torchtext import data, datasetsprint('GPU:', torch.cuda.is_available())torch.manual_seed(123)

image-20230310213555097
加载数据集:

TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)print(train_data.examples[15].text)
print(train_data.examples[15].label)

image-20230310213649845
网络结构:

class RNN(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim):""""""super(RNN, self).__init__()# [0-10001] => [100]self.embedding = nn.Embedding(vocab_size, embedding_dim)# [100] => [256]self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, bidirectional=True, dropout=0.5)# [256*2] => [1]self.fc = nn.Linear(hidden_dim*2, 1)self.dropout = nn.Dropout(0.5)def forward(self, x):"""x: [seq_len, b] vs [b, 3, 28, 28]"""# [seq, b, 1] => [seq, b, 100]embedding = self.dropout(self.embedding(x))# output: [seq, b, hid_dim*2]# hidden/h: [num_layers*2, b, hid_dim]# cell/c: [num_layers*2, b, hid_di]output, (hidden, cell) = self.rnn(embedding)# [num_layers*2, b, hid_dim] => 2 of [b, hid_dim] => [b, hid_dim*2]hidden = torch.cat([hidden[-2], hidden[-1]], dim=1)# [b, hid_dim*2] => [b, 1]hidden = self.dropout(hidden)out = self.fc(hidden)return out

Embedding

rnn = RNN(len(TEXT.vocab), 100, 256)pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape)
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')optimizer = optim.Adam(rnn.parameters(), lr=1e-3)
criteon = nn.BCEWithLogitsLoss().to(device)
rnn.to(device)

在这里插入图片描述
训练并测试

import numpy as npdef binary_acc(preds, y):"""get accuracy"""preds = torch.round(torch.sigmoid(preds))correct = torch.eq(preds, y).float()acc = correct.sum() / len(correct)return accdef train(rnn, iterator, optimizer, criteon):avg_acc = []rnn.train()for i, batch in enumerate(iterator):# [seq, b] => [b, 1] => [b]pred = rnn(batch.text).squeeze(1)# loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)optimizer.zero_grad()loss.backward()optimizer.step()if i%10 == 0:print(i, acc)avg_acc = np.array(avg_acc).mean()print('avg acc:', avg_acc)def eval(rnn, iterator, criteon):avg_acc = []rnn.eval()with torch.no_grad():for batch in iterator:# [b, 1] => [b]pred = rnn(batch.text).squeeze(1)#loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)avg_acc = np.array(avg_acc).mean()print('>>test:', avg_acc)for epoch in range(10):eval(rnn, test_iterator, criteon)train(rnn, train_iterator, optimizer, criteon)

最后得到的准确率结果如下:
在这里插入图片描述
完整colab链接:lstm
完整代码:

# -*- coding: utf-8 -*-
"""lstmAutomatically generated by Colaboratory.Original file is located athttps://colab.research.google.com/drive/1GX0Rqur8T45MSYhLU9MYWAbycfLH4-Fu
"""!pip install torch
!pip install torchtext
!python -m spacy download en# K80 gpu for 12 hours
import torch
from torch import nn, optim
from torchtext import data, datasetsprint('GPU:', torch.cuda.is_available())torch.manual_seed(123)TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)print('len of train data:', len(train_data))
print('len of test data:', len(test_data))print(train_data.examples[15].text)
print(train_data.examples[15].label)# word2vec, glove
TEXT.build_vocab(train_data, max_size=10000, vectors='glove.6B.100d')
LABEL.build_vocab(train_data)batchsz = 30
device = torch.device('cuda')
train_iterator, test_iterator = data.BucketIterator.splits((train_data, test_data),batch_size = batchsz,device=device
)class RNN(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim):""""""super(RNN, self).__init__()# [0-10001] => [100]self.embedding = nn.Embedding(vocab_size, embedding_dim)# [100] => [256]self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, bidirectional=True, dropout=0.5)# [256*2] => [1]self.fc = nn.Linear(hidden_dim*2, 1)self.dropout = nn.Dropout(0.5)def forward(self, x):"""x: [seq_len, b] vs [b, 3, 28, 28]"""# [seq, b, 1] => [seq, b, 100]embedding = self.dropout(self.embedding(x))# output: [seq, b, hid_dim*2]# hidden/h: [num_layers*2, b, hid_dim]# cell/c: [num_layers*2, b, hid_di]output, (hidden, cell) = self.rnn(embedding)# [num_layers*2, b, hid_dim] => 2 of [b, hid_dim] => [b, hid_dim*2]hidden = torch.cat([hidden[-2], hidden[-1]], dim=1)# [b, hid_dim*2] => [b, 1]hidden = self.dropout(hidden)out = self.fc(hidden)return outrnn = RNN(len(TEXT.vocab), 100, 256)pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape)
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')optimizer = optim.Adam(rnn.parameters(), lr=1e-3)
criteon = nn.BCEWithLogitsLoss().to(device)
rnn.to(device)import numpy as npdef binary_acc(preds, y):"""get accuracy"""preds = torch.round(torch.sigmoid(preds))correct = torch.eq(preds, y).float()acc = correct.sum() / len(correct)return accdef train(rnn, iterator, optimizer, criteon):avg_acc = []rnn.train()for i, batch in enumerate(iterator):# [seq, b] => [b, 1] => [b]pred = rnn(batch.text).squeeze(1)# loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)optimizer.zero_grad()loss.backward()optimizer.step()if i%10 == 0:print(i, acc)avg_acc = np.array(avg_acc).mean()print('avg acc:', avg_acc)def eval(rnn, iterator, criteon):avg_acc = []rnn.eval()with torch.no_grad():for batch in iterator:# [b, 1] => [b]pred = rnn(batch.text).squeeze(1)#loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)avg_acc = np.array(avg_acc).mean()print('>>test:', avg_acc)for epoch in range(10):eval(rnn, test_iterator, criteon)train(rnn, train_iterator, optimizer, criteon)

相关文章:

ccc-pytorch-LSTM(8)

文章目录一、LSTM简介二、LSTM中的核心结构三、如何解决RNN中的梯度消失/爆炸问题四、情感分类实战(google colab)一、LSTM简介 LSTM(long short-term memory)长短期记忆网络,RNN的改进,克服了RNN中“记忆…...

教育小程序开发解决方案

如今无论是国家还是家庭对于教育的重视性也越来越高,都希望自己的孩子能够赢在起跑线上,但是因为工作的缘故许多家长并没有过多的精力去辅导孩子学习,再加上许多家长对于教育也并没有经验与技巧。而这些都充分体现了正确教育的重要性。 那么一…...

动态规划之股票问题大总结

参考资料:代码随想录 (programmercarl.com)一、只能买卖一次题目链接:121. 买卖股票的最佳时机 - 力扣(LeetCode)算法思想:设置两种状态:0表示已持有股票,1表示未持有股票1.dp[i][0]表示第i天已持有股票时&…...

我来跟你讲vue进阶

一、组件(重点) 组件(Component)是 Vue.js 最强大的功能之一。 组件可以扩展 HTML 元素,封装可重用的代码。 组件系统让我们可以用独立可复用的小组件来构建大型应用,几乎任意类型的应用的界面都可以抽象…...

#847(Div3)E. Vlad and a Pair of Numbers

原题链接: E. Vlad and a Pair of Numbers 题意: 题目有公式 a⊕b(ab)/2xa ⊕ b (a b) / 2 xa⊕b(ab)/2x, 给你的是 xxx,让输出一组满足题目要求的 a,ba,ba,b,没有就输出−1-1…...

怎么把pdf转换成图片?这个方法你值得拥有

想要高效率的工作,除了需要大家合理安排时间之外,一些能够辅助高效工作的工具也是必不可少的。就拿要把一份pdf文件转换成若干图片来说,如果不知道方法,找不到合适的转换工具,那么想要完成这一任务,势必要花…...

go语言使用append向二维数组添加一维数组

var ans [][]int ans append(ans, append([]int(nil), nums...))(正确写法)需要注意的是,为了避免对原切片造成影响,代码在将当前排列追加到结果数组 ans 时,使用了 append(ans, append([]int(nil), nums…)) 的方式…...

YOLOv5训练大规模的遥感实例分割数据集 iSAID从切图到数据集制作及训练

最近想训练遥感实例分割,纵观博客发现较少相关 iSAID数据集的切分及数据集转换内容,思来想去应该在繁忙之中抽出时间写个详细的教程。 iSAID数据集下载 iSAID数据集链接 下载上述数据集。 百度网盘中的train和val中包含了实例和语义分割标签。 上述…...

js学习5(函数)

目录 定义函数 函数的特性 使用函数模拟类 模拟私有属性和方法 闭包 函数特性利用 箭头函数 定义函数 function func1(name) { console.log(name); } func2 function (name) { console.log(name); } func3 function func0(name) { console.log(name); } co…...

用Qt画一个仪表盘

关于Qt Qt是一个跨平台的C图形用户界面应用程序框架,通过使用Qt,可以快速开发出跨平台的多平台应用程序,包括Windows、Mac OS X、Linux和其他Unix系统。Qt提供了强大的图形操作界面(GUI)程序开发和移植的能力&#xf…...

linux 端口查询命令

任何知识都是用进废退,有段时间没摸linux,这大脑里的知识点仿佛全部消失了,就无语。 索性,再写一篇记录,加强一下记忆,下次需要就看自己的资料好了。lsof命令Linux端口查询命令可以通过lsof实现&#xff1a…...

C语言函数: 字符串函数及模拟实现strtok()、strstr()、strerror()

C语言函数: 字符串函数及模拟实现strtok()、strstr()、strerror() strstr()函数: 作用:字符串查找。在一串字符串中,查找另一串字符串是否存在。 形参: str2在str1中寻找。返回值是char*的指针 原理:如果在str1中找到了str2&…...

【学习笔记】人工智能哲学研究:《心智、语言和机器》

关于人工智能哲学,我曾在这篇文章里 【脑洞大开】从哲学角度看人工智能:介绍徐英瑾的《心智、语言和机器》 做过介绍。图片来源:http://product.dangdang.com/29419969.html在我完成了一些人工智能相关的工作以后,我再来分享《心智…...

设计模式之门面模式(外观模式)

目录 1.模式定义 2.应用场景 2.1 电源总开关例子 2.2 股民炒股场景 ​编辑 3. 实例如下 4. 门面模式的优缺点 传送门: 项目中用到的责任链模式 给对象讲工厂模式,必须易懂易会 策略模式,工作中你用上了吗? 1.模式定…...

MySQL - 多表查询

目录1. 多表查询示例2. 多表查询分类2.1 等/非等值连接2.1.1 等值连接2.1.2非等值连接2.2 自然/非自然连接2.3 内/外连接2.3.1 内连接2.3.2 外连接3.UNION的使用3.1 合并查询结果3.1.1 UNION操作符3.1.2 UNION ALL操作符4. 7种JOIN操作5. join 多张表多表查询,也称为…...

自定义报表是什么?

自定义报表是指根据用户的需求和要求,自行设计和生成的报表。自定义报表可以根据用户的具体需求,选择需要的数据和指标,进行灵活的排列和组合,生成符合用户要求的报表。自定义报表可以帮助用户更好地了解业务情况,发现…...

windows安装docker-小白用【避坑】【伸手党福利】

目录实操开启 Hyper-V 和容器特性下载docker安装dockercmd中,使用命令测试是否成功报错解决办法:下载linux模拟器wsl:双击打开docker重新打开cmd,输入命令,成功显示sever和clinet实操 开启 Hyper-V 和容器特性 控制面…...

环形链表相关的练习

目录 一、相交链表 二、环形链表 三、环形链表 || 一、相交链表 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据…...

C++ 提示对话框

头文件 #include<iostream>#include<cstdio> using namespace std; 函数格式 MessageBox( HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType) 参数 hWnd &#xff1a;此参数代表消息框拥有的窗口。如果为NULL&#xff0c;则消息框没有拥有窗口。 lp…...

SprintBoot打包及profile文件配置

打成Jar包 需要添加打包组件将项目中的资源、配置、依赖包打到一个jar包中&#xff0c;可以使用maven的package&#xff1b;运行: java -jar xxx(jar包名) 操作步骤 第一步: 引入Spring Boot打包插件 <!--打包的插件--> <build><!--修改jar的名字--><fi…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...