ccc-pytorch-LSTM(8)
文章目录
- 一、LSTM简介
- 二、LSTM中的核心结构
- 三、如何解决RNN中的梯度消失/爆炸问题
- 四、情感分类实战(google colab)
一、LSTM简介
LSTM(long short-term memory)长短期记忆网络,RNN的改进,克服了RNN中“记忆低下”的问题。通过“门”结构实现信息的添加和移除,通过记忆元将序列处理过程中的相关信息一直传递下去,经典结构如下:


二、LSTM中的核心结构
记忆元(memory cell)-长期记忆:

就像一个cell一样,信息通过这条只有少量线性交互的线传递。传递过程中有3种“门”结构可以告诉它该学习或者保存哪些信息
三个门结构-短期记忆
遗忘门:用来决定当前状态哪些信息被移除

输入门:决定放入哪些信息到细胞状态

输出门:决定哪些信息用于输出

细节注意:
- 新的细胞状态只需要遗忘门和输入门就可以更新,公式为:Ct=ft∗Ct−1+it∗Ct~C_t=f_t*C_{t-1}+i_t* \tilde{C_t}Ct=ft∗Ct−1+it∗Ct~(注意所有的∗*∗都表示Hadamard 乘积)
- 只有隐状态h_t会传递到输出层,记忆元完全属于内部信息,不可手动修改
三、如何解决RNN中的梯度消失/爆炸问题
解决是指很大程度上缓解,不是让它彻底消失。先解释RNN为什么会有这些问题:
∂Lt∂U=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂U∂Lt∂W=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂W\begin{aligned} &\frac{\partial L_t}{\partial U}= \sum_{k=0}^{t}\frac{\partial L_t}{\partial O_t}\frac{\partial O_t}{\partial S_t}(\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}})\frac{\partial S_k}{\partial U}\\&\frac{\partial L_t}{\partial W}= \sum_{k=0}^{t}\frac{\partial L_t}{\partial O_t}\frac{\partial O_t}{\partial S_t}(\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}})\frac{\partial S_k}{\partial W} \end{aligned} ∂U∂Lt=k=0∑t∂Ot∂Lt∂St∂Ot(j=k+1∏t∂Sj−1∂Sj)∂U∂Sk∂W∂Lt=k=0∑t∂Ot∂Lt∂St∂Ot(j=k+1∏t∂Sj−1∂Sj)∂W∂Sk(具体过程可以看这里)
上面是训练过程任意时刻更新W、U需要用到的求偏导的结果。实际使用会加上激活函数,通常为tanh、sigmoid等
tanh和其导数图像如下

sigmoid和其导数如下

这些激活函数的导数都比1要小,又因为∏j=k+1t∂Sj∂Sj−1=∏j=k+1ttanh′(Ws)\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}}=\prod_{j=k+1}^{t}tanh'(W_s)∏j=k+1t∂Sj−1∂Sj=∏j=k+1ttanh′(Ws),所以当WsW_sWs过小过大就会分别造成梯度消失和爆炸的问题,特别是过小。
LSTM如何缓解
由链式法则和三个门的公式可以得到:
∂Ct∂Ct−1=∂Ct∂ft∂ft∂ht−1∂ht−1∂Ct−1+∂Ct∂it∂it∂ht−1∂ht−1∂Ct−1+∂Ct∂Ct~∂Ct~∂ht−1∂ht−1∂Ct−1+∂Ct∂Ct−1=Ct−1σ′(⋅)Wf∗ot−1tanh′(Ct−1)+Ct~σ′(⋅)Wi∗ot−1tanh′(Ct−1)+ittanh′(⋅)Wc∗ot−1tanh′(Ct−1)+ft\begin{aligned} &\frac{\partial C_t}{\partial C_{t-1}}\\&=\frac{\partial C_t}{\partial f_t}\frac{\partial f_t}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial i_t}\frac{\partial i_t}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial \tilde{C_t}}\frac{\partial \tilde{C_t}}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial C_{t-1}}\\ &=C_{t-1}\sigma '(\cdot)W_f*o_{t-1}tanh'(C_{t-1})+\tilde{C_t}\sigma '(\cdot)W_i*o_{t-1}tanh'(C_{t-1})\\&+i_ttanh'(\cdot)W_c*o_{t-1}tanh'(C_{t-1})+f_t \end{aligned}∂Ct−1∂Ct=∂ft∂Ct∂ht−1∂ft∂Ct−1∂ht−1+∂it∂Ct∂ht−1∂it∂Ct−1∂ht−1+∂Ct~∂Ct∂ht−1∂Ct~∂Ct−1∂ht−1+∂Ct−1∂Ct=Ct−1σ′(⋅)Wf∗ot−1tanh′(Ct−1)+Ct~σ′(⋅)Wi∗ot−1tanh′(Ct−1)+ittanh′(⋅)Wc∗ot−1tanh′(Ct−1)+ft
- 由相乘变成了相加,不容易叠加
- sigmoid函数使单元间传递结果非常接近0或者1,使模型变成非线性,并且可以在学习过程中内部调整
四、情感分类实战(google colab)
环境和库:
!pip install torch
!pip install torchtext
!python -m spacy download en# K80 gpu for 12 hours
import torch
from torch import nn, optim
from torchtext import data, datasetsprint('GPU:', torch.cuda.is_available())torch.manual_seed(123)

加载数据集:
TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)print(train_data.examples[15].text)
print(train_data.examples[15].label)

网络结构:
class RNN(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim):""""""super(RNN, self).__init__()# [0-10001] => [100]self.embedding = nn.Embedding(vocab_size, embedding_dim)# [100] => [256]self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, bidirectional=True, dropout=0.5)# [256*2] => [1]self.fc = nn.Linear(hidden_dim*2, 1)self.dropout = nn.Dropout(0.5)def forward(self, x):"""x: [seq_len, b] vs [b, 3, 28, 28]"""# [seq, b, 1] => [seq, b, 100]embedding = self.dropout(self.embedding(x))# output: [seq, b, hid_dim*2]# hidden/h: [num_layers*2, b, hid_dim]# cell/c: [num_layers*2, b, hid_di]output, (hidden, cell) = self.rnn(embedding)# [num_layers*2, b, hid_dim] => 2 of [b, hid_dim] => [b, hid_dim*2]hidden = torch.cat([hidden[-2], hidden[-1]], dim=1)# [b, hid_dim*2] => [b, 1]hidden = self.dropout(hidden)out = self.fc(hidden)return out
Embedding
rnn = RNN(len(TEXT.vocab), 100, 256)pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape)
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')optimizer = optim.Adam(rnn.parameters(), lr=1e-3)
criteon = nn.BCEWithLogitsLoss().to(device)
rnn.to(device)

训练并测试
import numpy as npdef binary_acc(preds, y):"""get accuracy"""preds = torch.round(torch.sigmoid(preds))correct = torch.eq(preds, y).float()acc = correct.sum() / len(correct)return accdef train(rnn, iterator, optimizer, criteon):avg_acc = []rnn.train()for i, batch in enumerate(iterator):# [seq, b] => [b, 1] => [b]pred = rnn(batch.text).squeeze(1)# loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)optimizer.zero_grad()loss.backward()optimizer.step()if i%10 == 0:print(i, acc)avg_acc = np.array(avg_acc).mean()print('avg acc:', avg_acc)def eval(rnn, iterator, criteon):avg_acc = []rnn.eval()with torch.no_grad():for batch in iterator:# [b, 1] => [b]pred = rnn(batch.text).squeeze(1)#loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)avg_acc = np.array(avg_acc).mean()print('>>test:', avg_acc)for epoch in range(10):eval(rnn, test_iterator, criteon)train(rnn, train_iterator, optimizer, criteon)
最后得到的准确率结果如下:

完整colab链接:lstm
完整代码:
# -*- coding: utf-8 -*-
"""lstmAutomatically generated by Colaboratory.Original file is located athttps://colab.research.google.com/drive/1GX0Rqur8T45MSYhLU9MYWAbycfLH4-Fu
"""!pip install torch
!pip install torchtext
!python -m spacy download en# K80 gpu for 12 hours
import torch
from torch import nn, optim
from torchtext import data, datasetsprint('GPU:', torch.cuda.is_available())torch.manual_seed(123)TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)print('len of train data:', len(train_data))
print('len of test data:', len(test_data))print(train_data.examples[15].text)
print(train_data.examples[15].label)# word2vec, glove
TEXT.build_vocab(train_data, max_size=10000, vectors='glove.6B.100d')
LABEL.build_vocab(train_data)batchsz = 30
device = torch.device('cuda')
train_iterator, test_iterator = data.BucketIterator.splits((train_data, test_data),batch_size = batchsz,device=device
)class RNN(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim):""""""super(RNN, self).__init__()# [0-10001] => [100]self.embedding = nn.Embedding(vocab_size, embedding_dim)# [100] => [256]self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, bidirectional=True, dropout=0.5)# [256*2] => [1]self.fc = nn.Linear(hidden_dim*2, 1)self.dropout = nn.Dropout(0.5)def forward(self, x):"""x: [seq_len, b] vs [b, 3, 28, 28]"""# [seq, b, 1] => [seq, b, 100]embedding = self.dropout(self.embedding(x))# output: [seq, b, hid_dim*2]# hidden/h: [num_layers*2, b, hid_dim]# cell/c: [num_layers*2, b, hid_di]output, (hidden, cell) = self.rnn(embedding)# [num_layers*2, b, hid_dim] => 2 of [b, hid_dim] => [b, hid_dim*2]hidden = torch.cat([hidden[-2], hidden[-1]], dim=1)# [b, hid_dim*2] => [b, 1]hidden = self.dropout(hidden)out = self.fc(hidden)return outrnn = RNN(len(TEXT.vocab), 100, 256)pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape)
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')optimizer = optim.Adam(rnn.parameters(), lr=1e-3)
criteon = nn.BCEWithLogitsLoss().to(device)
rnn.to(device)import numpy as npdef binary_acc(preds, y):"""get accuracy"""preds = torch.round(torch.sigmoid(preds))correct = torch.eq(preds, y).float()acc = correct.sum() / len(correct)return accdef train(rnn, iterator, optimizer, criteon):avg_acc = []rnn.train()for i, batch in enumerate(iterator):# [seq, b] => [b, 1] => [b]pred = rnn(batch.text).squeeze(1)# loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)optimizer.zero_grad()loss.backward()optimizer.step()if i%10 == 0:print(i, acc)avg_acc = np.array(avg_acc).mean()print('avg acc:', avg_acc)def eval(rnn, iterator, criteon):avg_acc = []rnn.eval()with torch.no_grad():for batch in iterator:# [b, 1] => [b]pred = rnn(batch.text).squeeze(1)#loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)avg_acc = np.array(avg_acc).mean()print('>>test:', avg_acc)for epoch in range(10):eval(rnn, test_iterator, criteon)train(rnn, train_iterator, optimizer, criteon)
相关文章:
ccc-pytorch-LSTM(8)
文章目录一、LSTM简介二、LSTM中的核心结构三、如何解决RNN中的梯度消失/爆炸问题四、情感分类实战(google colab)一、LSTM简介 LSTM(long short-term memory)长短期记忆网络,RNN的改进,克服了RNN中“记忆…...
教育小程序开发解决方案
如今无论是国家还是家庭对于教育的重视性也越来越高,都希望自己的孩子能够赢在起跑线上,但是因为工作的缘故许多家长并没有过多的精力去辅导孩子学习,再加上许多家长对于教育也并没有经验与技巧。而这些都充分体现了正确教育的重要性。 那么一…...
动态规划之股票问题大总结
参考资料:代码随想录 (programmercarl.com)一、只能买卖一次题目链接:121. 买卖股票的最佳时机 - 力扣(LeetCode)算法思想:设置两种状态:0表示已持有股票,1表示未持有股票1.dp[i][0]表示第i天已持有股票时&…...
我来跟你讲vue进阶
一、组件(重点) 组件(Component)是 Vue.js 最强大的功能之一。 组件可以扩展 HTML 元素,封装可重用的代码。 组件系统让我们可以用独立可复用的小组件来构建大型应用,几乎任意类型的应用的界面都可以抽象…...
#847(Div3)E. Vlad and a Pair of Numbers
原题链接: E. Vlad and a Pair of Numbers 题意: 题目有公式 a⊕b(ab)/2xa ⊕ b (a b) / 2 xa⊕b(ab)/2x, 给你的是 xxx,让输出一组满足题目要求的 a,ba,ba,b,没有就输出−1-1…...
怎么把pdf转换成图片?这个方法你值得拥有
想要高效率的工作,除了需要大家合理安排时间之外,一些能够辅助高效工作的工具也是必不可少的。就拿要把一份pdf文件转换成若干图片来说,如果不知道方法,找不到合适的转换工具,那么想要完成这一任务,势必要花…...
go语言使用append向二维数组添加一维数组
var ans [][]int ans append(ans, append([]int(nil), nums...))(正确写法)需要注意的是,为了避免对原切片造成影响,代码在将当前排列追加到结果数组 ans 时,使用了 append(ans, append([]int(nil), nums…)) 的方式…...
YOLOv5训练大规模的遥感实例分割数据集 iSAID从切图到数据集制作及训练
最近想训练遥感实例分割,纵观博客发现较少相关 iSAID数据集的切分及数据集转换内容,思来想去应该在繁忙之中抽出时间写个详细的教程。 iSAID数据集下载 iSAID数据集链接 下载上述数据集。 百度网盘中的train和val中包含了实例和语义分割标签。 上述…...
js学习5(函数)
目录 定义函数 函数的特性 使用函数模拟类 模拟私有属性和方法 闭包 函数特性利用 箭头函数 定义函数 function func1(name) { console.log(name); } func2 function (name) { console.log(name); } func3 function func0(name) { console.log(name); } co…...
用Qt画一个仪表盘
关于Qt Qt是一个跨平台的C图形用户界面应用程序框架,通过使用Qt,可以快速开发出跨平台的多平台应用程序,包括Windows、Mac OS X、Linux和其他Unix系统。Qt提供了强大的图形操作界面(GUI)程序开发和移植的能力…...
linux 端口查询命令
任何知识都是用进废退,有段时间没摸linux,这大脑里的知识点仿佛全部消失了,就无语。 索性,再写一篇记录,加强一下记忆,下次需要就看自己的资料好了。lsof命令Linux端口查询命令可以通过lsof实现:…...
C语言函数: 字符串函数及模拟实现strtok()、strstr()、strerror()
C语言函数: 字符串函数及模拟实现strtok()、strstr()、strerror() strstr()函数: 作用:字符串查找。在一串字符串中,查找另一串字符串是否存在。 形参: str2在str1中寻找。返回值是char*的指针 原理:如果在str1中找到了str2&…...
【学习笔记】人工智能哲学研究:《心智、语言和机器》
关于人工智能哲学,我曾在这篇文章里 【脑洞大开】从哲学角度看人工智能:介绍徐英瑾的《心智、语言和机器》 做过介绍。图片来源:http://product.dangdang.com/29419969.html在我完成了一些人工智能相关的工作以后,我再来分享《心智…...
设计模式之门面模式(外观模式)
目录 1.模式定义 2.应用场景 2.1 电源总开关例子 2.2 股民炒股场景 编辑 3. 实例如下 4. 门面模式的优缺点 传送门: 项目中用到的责任链模式 给对象讲工厂模式,必须易懂易会 策略模式,工作中你用上了吗? 1.模式定…...
MySQL - 多表查询
目录1. 多表查询示例2. 多表查询分类2.1 等/非等值连接2.1.1 等值连接2.1.2非等值连接2.2 自然/非自然连接2.3 内/外连接2.3.1 内连接2.3.2 外连接3.UNION的使用3.1 合并查询结果3.1.1 UNION操作符3.1.2 UNION ALL操作符4. 7种JOIN操作5. join 多张表多表查询,也称为…...
自定义报表是什么?
自定义报表是指根据用户的需求和要求,自行设计和生成的报表。自定义报表可以根据用户的具体需求,选择需要的数据和指标,进行灵活的排列和组合,生成符合用户要求的报表。自定义报表可以帮助用户更好地了解业务情况,发现…...
windows安装docker-小白用【避坑】【伸手党福利】
目录实操开启 Hyper-V 和容器特性下载docker安装dockercmd中,使用命令测试是否成功报错解决办法:下载linux模拟器wsl:双击打开docker重新打开cmd,输入命令,成功显示sever和clinet实操 开启 Hyper-V 和容器特性 控制面…...
环形链表相关的练习
目录 一、相交链表 二、环形链表 三、环形链表 || 一、相交链表 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据…...
C++ 提示对话框
头文件 #include<iostream>#include<cstdio> using namespace std; 函数格式 MessageBox( HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType) 参数 hWnd :此参数代表消息框拥有的窗口。如果为NULL,则消息框没有拥有窗口。 lp…...
SprintBoot打包及profile文件配置
打成Jar包 需要添加打包组件将项目中的资源、配置、依赖包打到一个jar包中,可以使用maven的package;运行: java -jar xxx(jar包名) 操作步骤 第一步: 引入Spring Boot打包插件 <!--打包的插件--> <build><!--修改jar的名字--><fi…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
