Arnoldi Iteration 思考
文章目录
- 1. 投影平面
- 2. Arnoldi Iteration
- 3. python 代码
1. 投影平面
假设我们有一个向量q,我们需要关于向量q,构建一个投影平面P,使得给定任何向量v,可以通过公式 p = P v p=Pv p=Pv,快速得到向量v在投影平面P上的投影向量p.
- 计算向量内积,向量v在向量q上的投影长度|p|
v T q = ∣ v ∣ ∣ q ∣ cos θ = ∣ p ∣ ∣ q ∣ → ∣ p ∣ = v T q ∣ q ∣ \begin{equation} v^Tq=|v||q|\cos{\theta}=|p||q|\rightarrow |p|=\frac{v^Tq}{|q|} \end{equation} vTq=∣v∣∣q∣cosθ=∣p∣∣q∣→∣p∣=∣q∣vTq - 我们知道,q方向上的单位向量为 q ∣ q ∣ \frac{q}{|q|} ∣q∣q,那么投影向量p可得, v T q v^Tq vTq为标量,
随便放位置
p = ∣ p ∣ ⋅ q ∣ q ∣ = v T q ∣ q ∣ ⋅ q ∣ q ∣ = v T q q T q q \begin{equation} p=|p|\cdot \frac{q}{|q|} =\frac{v^Tq}{|q|}\cdot \frac{q}{|q|}=\frac{v^Tq}{q^Tq}q \end{equation} p=∣p∣⋅∣q∣q=∣q∣vTq⋅∣q∣q=qTqvTqq - 重点!内积可以随便转换,并且标量位置可以随便放!
v T q = q T v \begin{equation} v^Tq=q^Tv \end{equation} vTq=qTv - 整理可得:
p = q T v q T q q = q T v q q T q \begin{equation} p=\frac{q^Tv}{q^Tq}q=\frac{q^Tvq}{q^Tq} \end{equation} p=qTqqTvq=qTqqTvq - 标量位置随意可得: q T v q → q q T v q^Tvq\rightarrow qq^Tv qTvq→qqTv
p = q T v q q T q = q q T q T q v \begin{equation} p=\frac{q^Tvq}{q^Tq}= \frac{qq^T}{q^Tq}v \end{equation} p=qTqqTvq=qTqqqTv - 第一个是投影矩阵P
P = q q T q T q , p = P v \begin{equation} P=\frac{qq^T}{q^Tq},p=Pv \end{equation} P=qTqqqT,p=Pv - 第二,快速计算一个向量v在向量q上的投影p
p = q T v q q T q \begin{equation} p=\frac{q^Tvq}{q^Tq} \end{equation} p=qTqqTvq - 第三,当q为单位向量的时候, q T q = ∣ q ∣ 2 = 1 q^Tq=|q|^2=1 qTq=∣q∣2=1,像不像二次型形式,就是这么神奇!
p = q T v q \begin{equation} p=q^Tvq \end{equation} p=qTvq - 第四 ,一般情况下计算垂直向量e,向量几何关系可得v=p+e,
e = v − p = v − q T v q q T q \begin{equation} e=v-p=v-\frac{q^Tvq}{q^Tq} \end{equation} e=v−p=v−qTqqTvq
第五,特殊情况下,|q|=1,整理可得:
e = v − q T v q \begin{equation} e=v-q^Tvq \end{equation} e=v−qTvq

2. Arnoldi Iteration
arnoldi Iteration的作用是想在原来的krylov 子空间中增加一个向量 A q k Aq_k Aqk,具体思路如下图所示:



- 小结:arnoldi Iteration 本质上就是新建一个向量 v v v,为了让v向量和以前已知的向量 q 1 , q 2 , ⋯ , q k q_1,q_2,\cdots,q_k q1,q2,⋯,qk垂直,通过不断迭代,将v向量减去掉所有在 q 1 , q 2 , ⋯ , q k q_1,q_2,\cdots,q_k q1,q2,⋯,qk上的投影向量 e k e_k ek,这样最后得到的向量 q k q_k qk就一定是垂直于 q 1 , q 2 , ⋯ , q k q_1,q_2,\cdots,q_k q1,q2,⋯,qk
3. python 代码
后续提供详细的,现在直接粘贴吧。
import numpy as npdef arnoldi_iteration(A, b, k):"""Perform Arnoldi iteration to generate an orthonormal basis for the Krylov subspace.Parameters:A : numpy.ndarrayThe input matrix (n x n).b : numpy.ndarrayThe initial vector (n, ).k : intThe number of iterations, which defines the size of the Krylov subspace.Returns:Q : numpy.ndarrayThe orthonormal basis for the Krylov subspace (n x (k+1)).H : numpy.ndarrayThe Hessenberg matrix (k+1 x k)."""n = A.shape[0]Q = np.zeros((n, k + 1)) # Orthonormal basisH = np.zeros((k + 1, k)) # Hessenberg matrix# Normalize the initial vectorQ[:, 0] = b / np.linalg.norm(b)for j in range(k):v = A @ Q[:, j] # Matrix-vector multiplicationfor i in range(j + 1):H[i, j] = np.dot(Q[:, i].conj(), v) # Project v onto the current basis vectorsv = v - H[i, j] * Q[:, i] # Make v orthogonal to Q[:, i]H[j + 1, j] = np.linalg.norm(v) # Normalize v to get the next basis vectorif H[j + 1, j] != 0 and j + 1 < k:Q[:, j + 1] = v / H[j + 1, j]return Q, H# Example usage
if __name__ == "__main__":# Define a random matrix A and a random vector bA = np.random.rand(5, 5)b = np.random.rand(5)k = 4Q, H = arnoldi_iteration(A, b, k)print("Orthonormal basis Q:\n", Q)print("Hessenberg matrix H:\n", H)相关文章:
Arnoldi Iteration 思考
文章目录 1. 投影平面2. Arnoldi Iteration3. python 代码 1. 投影平面 假设我们有一个向量q,我们需要关于向量q,构建一个投影平面P,使得给定任何向量v,可以通过公式 p P v pPv pPv,快速得到向量v在投影平面P上的投影向量p. 计算向量内积,…...
【Kafka】SpringBoot整合Kafka详细介绍及代码示例
Kafka介绍 Apache Kafka是一个分布式流处理平台。它最初由LinkedIn开发,后来成为Apache软件基金会的一部分,并在开源社区中得到了广泛应用。Kafka的核心概念包括Producer、Consumer、Broker、Topic、Partition和Offset。 Producer:生产者&a…...
C++ 质数因子分解
描述 功能:输入一个正整数,按照从小到大的顺序输出它的所有质因子(重复的也要列举)(如180的质因子为2 2 3 3 5 ) 输入描述: 输入一个整数 输出描述: 按照从小到大的顺序输出它的所有质数的…...
laravel版本≥ 8.1
laravel10 php ≥ 8.1 且 ≤ 8.3? 8.1 < php < 8.3PHP版本要求在 8.1 到 8.3 之间,包括这两个版本。具体来说:"≥ 8.1" 表示 PHP 的版本至少是 8.1,也就是说 8.1 及以上的版本都可以。 "≤ 8.3" 表示 P…...
【iOS】MRC下的单例模式批量创建单例
单例模式的介绍和ARC下的单例请见这篇:【iOS】单例模式 目录 关闭ARC环境MRC下的单例ARC下的单例批量创建单例Demo 关闭ARC环境 首先关闭ARC环境,即打开MRC: 或是指定某特定目标文件为非ARC环境: 双击某个类文件,指定…...
计算机网络期末复习
今天考专四,环境都蛮好的,试卷也很新,老师人也不错,明年再来。 又到期末考试咯,大家复习没有?还没复习啊?还不复???? 目录 第一章 1-02 试简述…...
python写一个获取竞品信息报告
要编写一个获取竞品信息报告的Python程序,首先需要明确您想要获取的竞品信息以及数据来源。在这个示例中,我将展示如何从网页提取竞品信息,并编写一个简单的报告。 假设您想要获取以下竞品信息: 1. 产品名称 2. 产品价格 3. 产品特…...
一文彻底理解机器学习 ROC-AUC 指标
在机器学习和数据科学的江湖中,评估模型的好坏是非常关键的一环。而 ROC(Receiver Operating Characteristic)曲线和 AUC(Area Under Curve)正是评估分类模型性能的重要工具。 这个知识点在面试中也很频繁的出现。尽管…...
【二】【动态规划NEW】91. 解码方法,62. 不同路径,63. 不同路径 II
91. 解码方法 一条包含字母 A-Z 的消息通过以下映射进行了 编码 : ‘A’ -> “1” ‘B’ -> “2” … ‘Z’ -> “26” 要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法ÿ…...
Python闯LeetCode--第3题:无重复字符的最长子串
Problem: 3. 无重复字符的最长子串 文章目录 思路解题方法复杂度Code 思路 一上来马上想到两层for循环暴力枚举,但是又立马想到复杂度是 O ( n 2 ) O(n^2) O(n2),思考了一下能否有更优解,于是想到用头尾两个指针来指定滑动窗口(主…...
HTML DOM 对象
HTML DOM 对象 1. 概述 HTML DOM(文档对象模型)是一个跨平台和语言独立的接口,它允许程序和脚本动态地访问和更新文档的内容、结构和样式。在HTML DOM中,文档被表示为节点树,其中每个节点代表文档中的一个部分,例如元素、文本或属性。HTML DOM对象是构成这个节点树的基…...
如何解决 BeautifulSoup 安装问题:从 BeautifulSoup 3 到 BeautifulSoup 4
在使用 Python 的过程中,解析 HTML 和 XML 数据是一项常见任务。BeautifulSoup 是一个非常流行的解析库。然而,最近在安装 BeautifulSoup 时,遇到了一些问题。本文将介绍如何解决这些问题,并成功安装 BeautifulSoup 4。 问题描述 …...
原型模式--深复制/浅复制
原型模式用于克隆复杂对象,由于new一个实例对象会消耗大部分时间,所以原型模式可以节约大量时间 1 public class Sheep implements Cloneable{2 private String name;3 private Date birth;4 public Sheep(String name, Date birth) {5 …...
C# TextBox模糊查询及输入提示
在程序中,我们经常会遇到文本框中不知道输入什么内容,这时我们可以在文本框中显示提示词提示用户;或者需要查询某个内容却记不清完整信息,通常可以通过文本框列出与输入词相匹配的信息,帮助用户快速索引信息。 文本框…...
Node入门以及express创建项目
前言 记录学习NodeJS 一、NodeJS是什么? Node.js 是一个开源和跨平台的 JavaScript 运行时环境 二、下载NodeJs 1.下载地址(一直点击next即可,记得修改安装地址) https://nodejs.p2hp.com/download/ 2.查看是否安装成功,打开命令行 nod…...
Cheat Engine CE v7.5 安装教程(专注于游戏的修改器)
前言 Cheat Engine是一款专注于游戏的修改器。它可以用来扫描游戏中的内存,并允许修改它们。它还附带了调试器、反汇编器、汇编器、变速器、作弊器生成、Direct3D操作工具、系统检查工具等。 一、下载地址 下载链接:http://dygod/source 点击搜索&…...
【实例分享】访问后端服务超时,银河麒麟服务器操作系统分析及处理建议
1.服务器环境以及配置 【机型】 处理器: Intel 32核 内存: 128G 整机类型/架构: x86_64虚拟机 【内核版本】 4.19.90-25.22.v2101.kylin.x86_64 【OS镜像版本】 kylin server V10 SP2 【第三方软件】 开阳k8s 2.问题现象描述 …...
Java中和的区别
在Java中,& 和 && 都是逻辑运算符,但它们之间存在一些重要的区别,特别是在它们如何评估其操作数以及它们的性能影响方面。 短路评估(Short-Circuit Evaluation): &&(逻辑…...
深入理解计算机系统 CSAPP 家庭作业6.34
第一步先求(S,E,B,m) 题目说共C32个字节,块大小B为16个字节,那就是分为两组:0,1.然后每组存4个int 每个4字节 CB*E*S .B16 ,直接映射的E就是1,所以S2 m为啥等于7? 通过写出两个数组所有的地址可以得出m7. 得出高速缓存的参数:(S,E,B,m)(2,1,16,7),注意图6-26每个参数的定义…...
[leetcode 141环形链表]双指针解决环形链表
Problem: 141. 环形链表 文章目录 思路Code 思路 首先想到如果链表为空直接返回false 其次想到用双指针,一个一回走一步,另一个一回走两步 如果是环形,总有一个时刻,两指针会指向同一个节点,而且该结点不能为空(空是快指针遍历完单链表了) Code /*** Definition for singly-li…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
