当前位置: 首页 > news >正文

【机器学习】第6章 支持向量机(SVM)

一、概念

1.支持向量机(support vector machine,SVM):

(1)基于统计学理论的监督学习方法,但不属于生成式模型,而是判别式模型

(2)支持向量机在各个领域内的模式识别问题中都有广泛应用,包括人脸识别、文本分类、笔迹识别等。

(3)在解决小样本、非线性及高维模式识别等问题中表现出了许多特有的优势。

(4)在函数模拟、模式识别和数据分类等领域也取得了极好的应用效果。

2.分三种,但是前两种差不多:

(1)线性可分时,通过硬间隔最大化。

(2)近似线性可分时,通过软间隔最大化。

(3)不可分时,通过使用核技巧以及软间隔最大化。

3.线性可分SVM

(1)原理:在这n维的数据空间中找到一个超平面(Hyper Plane),将所有的正例划分到超平面的一侧,将所有的负例划分到超平面的另一侧。

(2)超平面可以有无数个,所以寻找边际最大的平面

(3)硬间隔缺点:

对于异常值过于敏感,就是有的值它离超平面异常的近,导致一系列问题

(4)所以引入了软间隔,也就是上面的近似线性可分,它nb在允许少量分类错误,以此消除硬间隔所产生的问题。

(5)上述只是二分类,但是多分类也可以,不要产生思维禁锢,了解即可。

4.非线性问题(核函数

(1)在空间中无法用一条直线(线性)将数据集中的正例和负例正确地分隔开,但可以用一条圆形曲线(非线性)分隔。

(2)对此,采用核函数来解决,原理是从低纬升至高维,是的,你没有看错,相当于从一张纸变成一块积木。

但是看似复杂了,但是实际上也确实很难。

但是解释起来很简单,就是把正例和负例从原来在一个面上剥离,一个全部在“上面”,一个全部在下面。

(3)对此产生的问题:维度灾难

二、习题

多选题:

10. 下列关于支持向量机的说法正确的是( ABC )

A、可用于多分类问题  

B、超平面的位置仅由支持向量决定,与其他样本点无关。  

C、支持非线性的核函数  

D、是一种监督式的学习方法,属于生成式模型。  

相关文章:

【机器学习】第6章 支持向量机(SVM)

一、概念 1.支持向量机(support vector machine,SVM): (1)基于统计学理论的监督学习方法,但不属于生成式模型,而是判别式模型。 (2)支持向量机在各个领域内的…...

hive笔记

文章目录 1. 如何增加列2. 如何查看表的具体列的数据类型3. 如何drop一个表 1. 如何增加列 alter table your_table_name add columns (your_column_name varchar(255));2. 如何查看表的具体列的数据类型 DESCRIBE your_table_name3. 如何drop一个表 drop table your_table_…...

kali - 配置静态网络地址 + ssh 远程连接

文章目录 观前提示:本环境在 root 用户下kali 配置静态网络地址打开网络配置文件 kali 配置 ssh 远程连接 观前提示:本环境在 root 用户下 kali 配置静态网络地址 打开网络配置文件 vim /etc/network/interfaces出现一下内容 # This file describes …...

Redis常见数据类型及其常用命令详解

文章目录 一、Redis概述二、Redis常用命令1.通用命令1.1 KEYS:查看符合模板的所有 key1.2 DEL:删除一个指定的 key1.3 EXISTS:判断 key 是否存在1.4 EXPIRE:给一个 key 设置有效期,有效期到期时该 key 会被自动删除1.5…...

JMU 数科 数据库与数据仓库期末总结(4)实验设计题

E-R图 实体-关系图 E-R图的组成要素主要包括: 实体(Entity):实体代表现实世界中可相互区别的对象或事物,如顾客、订单、产品等。在图中,实体通常用矩形表示,并在矩形内标注实体的名称。 属性…...

Go版RuoYi

RuoYi-Go(DDD) 1. 关于我(在找远程工作,给机会的老板可以联系) 个人介绍 2. 后端 后端是用Go写的RuoYi权限管理系统 (功能正在持续实现) 用DDD领域驱动设计(六边形架构)做实践 后端 GitHub地址 后端 Gitee地址 3. 前端 本项目没有自研前端,前端代…...

八股系列 Flink

Flink 和 SparkStreaming的区别 设计理念方面 SparkStreaming:使用微批次来模拟流计算,数据已时间为单位分为一个个批次,通过RDD进行分布式计算 Flink:基于事件驱动,是面向流的处理框架,是真正的流式计算…...

HTTP/2 协议学习

HTTP/2 协议介绍 ​ HTTP/2 (原名HTTP/2.0)即超文本传输协议 2.0,是下一代HTTP协议。是由互联网工程任务组(IETF)的Hypertext Transfer Protocol Bis (httpbis)工作小组进行开发。是自1999年http1.1发布后的首个更新。…...

“先票后款”条款的效力认定

当事人明确约定一方未开具发票,另一方有权拒绝支付工程款的,该约定对当事人具有约束力。收款方请求付款方支付工程款时,付款方可以行使先履行抗辩权,但为减少当事人诉累,收款方在诉讼中明确表示愿意开具发票&#xff0…...

CSDN 自动上传图片并优化Markdown的图片显示

文章目录 完整代码一、上传资源二、替换 MD 中的引用文件为在线链接参考 完整代码 完整代码由两个文件组成,upload.py 和 main.py,放在同一目录下运行 main.py 就好! # upload.py import requests class UploadPic: def __init__(self, c…...

常见日志库NLog、log4net、Serilog和Microsoft.Extensions.Logging介绍和区别

在C#中,日志库的选择主要取决于项目的具体需求,包括性能、易用性、可扩展性等因素。以下是关于NLog、log4net、Serilog和Microsoft.Extensions.Logging的基本介绍和使用示例。 包含如何配置输出日志到当前目录下的log.txt文件及控制台的示例,…...

【PX4-AutoPilot教程-TIPS】离线安装Flight Review PX4日志分析工具

离线安装Flight Review PX4日志分析工具 安装方法 安装方法 使用Flight Review在线分析日志,有时会因为网络原因无法使用。 使用离线安装的方式使用Flight Review,可以在无需网络的情况下使用Flight Review网页。 安装环境依赖。 sudo apt-get insta…...

探究Spring Boot自动配置的底层原理

在当今的软件开发领域,Spring Boot已经成为了构建Java应用程序的首选框架之一。它以其简单易用的特性和强大的功能而闻名,其中最引人注目的特性之一就是自动配置(Auto-Configuration)。Spring Boot的自动配置能够极大地简化开发人…...

Fedora40的#!bash #!/bin/bash #!/bin/env bash #!/usr/bin/bash #!/usr/bin/env bash

bash脚本开头可写成 #!/bin/bash , #!/bin/env bash , #!/usr/bin/bash , #!/usr/bin/env bash #!/bin/bash , #!/usr/bin/bash#!/bin/env bash , #!/usr/bin/env bash Fedora40Workstation版的 /bin 是 /usr/bin 的软链接, /sbin 是 /usr/sbin 的软链接, rootfedora:~# ll …...

重生之 SpringBoot3 入门保姆级学习(19、场景整合 CentOS7 Docker 的安装)

重生之 SpringBoot3 入门保姆级学习(19、场景整合 CentOS7 Docker 的安装) 6、场景整合6.1 Docker 6、场景整合 6.1 Docker 官网 https://docs.docker.com/查看自己的 CentOS配置 cat /etc/os-releaseStep 1: 安装必要的一些系统工具 sudo yum insta…...

cve_2014_3120-Elasticsearch-rce-vulfocus靶场

1.背景 来源:ElasticSearch(CVE-2014-3120)命令执行漏洞复现_mvel 漏洞-CSDN博客 参考:https://www.cnblogs.com/huangxiaosan/p/14398307.html 老版本ElasticSearch支持传入动态脚本(MVEL)来执行一些复…...

吴恩达2022机器学习专项课程C2W3:2.26 机器学习发展历程

目录 开发机器学习系统的过程开发机器学习案例1.问题描述2.创建监督学习算法3.解决问题4.小结 误差分析1.概述2.误差分析解决之前的问题3.小结 增加数据1.简述2.增加数据案例一3.增加数据案例二4.添加数据的技巧5.空白创建数据6.小结 迁移学习1.简述2.为什么迁移学习有作用3.小…...

当OpenHarmony遇上OpenEuler

1、 安装openEuler 虚拟机、物理机器当然都可以安装。虚拟机又可以使用WSL、或者VMWare、VirtualBox虚拟机软件,如果需要安装最新版本,建议使用后者。当前WSL只支持OpenEuler 20.03。 1.1 WSL openEuler WSL的安装都是程序员的必备技能了,…...

Apple - Framework Programming Guide

本文翻译自:Framework Programming Guide(更新日期:2013-09-17 https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPFrameworks/Frameworks.html#//apple_ref/doc/uid/10000183i 文章目录 一、框架编程指南简介…...

R可视化:ggpubr包学习

欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者 Xiao hong书:生信学习者 知hu:生信学习者 CDSN:生信学习者2 介绍 ggpubr是我经常会用到的R包,它傻瓜式的画图方式对很多初次接触R绘图的人来…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...