区间预测 | Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测
区间预测 | Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测
目录
- 区间预测 | Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览





基本介绍
1.Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测(完整源码和数据)
2.CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测(点预测+概率预测+核密度估计) Matlab语言
3.多变量单输出,包括点预测+概率预测+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2、MAE、RMSE、MAPE、区间覆盖率picp、区间平均宽度百分比pinaw等。
4.算法新颖,对固定带宽核函数进行了改进。
5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行main文件一键出图。
6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据获取方式私信博主回复Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
%res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% *区间预测* (基于KDE)
z = [0.975;0.95;0.875;0.75;0.625;0.55;0.525]; %分位数%% *值评估指标*
[Error] = PlotError(T_sim1,T_train,N,'#3D59AB');
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章:
区间预测 | Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测
区间预测 | Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现CNN-ABKDE卷积神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CNN-ABKDE卷积神经网络自适应…...
【机器学习】第6章 支持向量机(SVM)
一、概念 1.支持向量机(support vector machine,SVM): (1)基于统计学理论的监督学习方法,但不属于生成式模型,而是判别式模型。 (2)支持向量机在各个领域内的…...
hive笔记
文章目录 1. 如何增加列2. 如何查看表的具体列的数据类型3. 如何drop一个表 1. 如何增加列 alter table your_table_name add columns (your_column_name varchar(255));2. 如何查看表的具体列的数据类型 DESCRIBE your_table_name3. 如何drop一个表 drop table your_table_…...
kali - 配置静态网络地址 + ssh 远程连接
文章目录 观前提示:本环境在 root 用户下kali 配置静态网络地址打开网络配置文件 kali 配置 ssh 远程连接 观前提示:本环境在 root 用户下 kali 配置静态网络地址 打开网络配置文件 vim /etc/network/interfaces出现一下内容 # This file describes …...
Redis常见数据类型及其常用命令详解
文章目录 一、Redis概述二、Redis常用命令1.通用命令1.1 KEYS:查看符合模板的所有 key1.2 DEL:删除一个指定的 key1.3 EXISTS:判断 key 是否存在1.4 EXPIRE:给一个 key 设置有效期,有效期到期时该 key 会被自动删除1.5…...
JMU 数科 数据库与数据仓库期末总结(4)实验设计题
E-R图 实体-关系图 E-R图的组成要素主要包括: 实体(Entity):实体代表现实世界中可相互区别的对象或事物,如顾客、订单、产品等。在图中,实体通常用矩形表示,并在矩形内标注实体的名称。 属性…...
Go版RuoYi
RuoYi-Go(DDD) 1. 关于我(在找远程工作,给机会的老板可以联系) 个人介绍 2. 后端 后端是用Go写的RuoYi权限管理系统 (功能正在持续实现) 用DDD领域驱动设计(六边形架构)做实践 后端 GitHub地址 后端 Gitee地址 3. 前端 本项目没有自研前端,前端代…...
八股系列 Flink
Flink 和 SparkStreaming的区别 设计理念方面 SparkStreaming:使用微批次来模拟流计算,数据已时间为单位分为一个个批次,通过RDD进行分布式计算 Flink:基于事件驱动,是面向流的处理框架,是真正的流式计算…...
HTTP/2 协议学习
HTTP/2 协议介绍 HTTP/2 (原名HTTP/2.0)即超文本传输协议 2.0,是下一代HTTP协议。是由互联网工程任务组(IETF)的Hypertext Transfer Protocol Bis (httpbis)工作小组进行开发。是自1999年http1.1发布后的首个更新。…...
“先票后款”条款的效力认定
当事人明确约定一方未开具发票,另一方有权拒绝支付工程款的,该约定对当事人具有约束力。收款方请求付款方支付工程款时,付款方可以行使先履行抗辩权,但为减少当事人诉累,收款方在诉讼中明确表示愿意开具发票࿰…...
CSDN 自动上传图片并优化Markdown的图片显示
文章目录 完整代码一、上传资源二、替换 MD 中的引用文件为在线链接参考 完整代码 完整代码由两个文件组成,upload.py 和 main.py,放在同一目录下运行 main.py 就好! # upload.py import requests class UploadPic: def __init__(self, c…...
常见日志库NLog、log4net、Serilog和Microsoft.Extensions.Logging介绍和区别
在C#中,日志库的选择主要取决于项目的具体需求,包括性能、易用性、可扩展性等因素。以下是关于NLog、log4net、Serilog和Microsoft.Extensions.Logging的基本介绍和使用示例。 包含如何配置输出日志到当前目录下的log.txt文件及控制台的示例,…...
【PX4-AutoPilot教程-TIPS】离线安装Flight Review PX4日志分析工具
离线安装Flight Review PX4日志分析工具 安装方法 安装方法 使用Flight Review在线分析日志,有时会因为网络原因无法使用。 使用离线安装的方式使用Flight Review,可以在无需网络的情况下使用Flight Review网页。 安装环境依赖。 sudo apt-get insta…...
探究Spring Boot自动配置的底层原理
在当今的软件开发领域,Spring Boot已经成为了构建Java应用程序的首选框架之一。它以其简单易用的特性和强大的功能而闻名,其中最引人注目的特性之一就是自动配置(Auto-Configuration)。Spring Boot的自动配置能够极大地简化开发人…...
Fedora40的#!bash #!/bin/bash #!/bin/env bash #!/usr/bin/bash #!/usr/bin/env bash
bash脚本开头可写成 #!/bin/bash , #!/bin/env bash , #!/usr/bin/bash , #!/usr/bin/env bash #!/bin/bash , #!/usr/bin/bash#!/bin/env bash , #!/usr/bin/env bash Fedora40Workstation版的 /bin 是 /usr/bin 的软链接, /sbin 是 /usr/sbin 的软链接, rootfedora:~# ll …...
重生之 SpringBoot3 入门保姆级学习(19、场景整合 CentOS7 Docker 的安装)
重生之 SpringBoot3 入门保姆级学习(19、场景整合 CentOS7 Docker 的安装) 6、场景整合6.1 Docker 6、场景整合 6.1 Docker 官网 https://docs.docker.com/查看自己的 CentOS配置 cat /etc/os-releaseStep 1: 安装必要的一些系统工具 sudo yum insta…...
cve_2014_3120-Elasticsearch-rce-vulfocus靶场
1.背景 来源:ElasticSearch(CVE-2014-3120)命令执行漏洞复现_mvel 漏洞-CSDN博客 参考:https://www.cnblogs.com/huangxiaosan/p/14398307.html 老版本ElasticSearch支持传入动态脚本(MVEL)来执行一些复…...
吴恩达2022机器学习专项课程C2W3:2.26 机器学习发展历程
目录 开发机器学习系统的过程开发机器学习案例1.问题描述2.创建监督学习算法3.解决问题4.小结 误差分析1.概述2.误差分析解决之前的问题3.小结 增加数据1.简述2.增加数据案例一3.增加数据案例二4.添加数据的技巧5.空白创建数据6.小结 迁移学习1.简述2.为什么迁移学习有作用3.小…...
当OpenHarmony遇上OpenEuler
1、 安装openEuler 虚拟机、物理机器当然都可以安装。虚拟机又可以使用WSL、或者VMWare、VirtualBox虚拟机软件,如果需要安装最新版本,建议使用后者。当前WSL只支持OpenEuler 20.03。 1.1 WSL openEuler WSL的安装都是程序员的必备技能了,…...
Apple - Framework Programming Guide
本文翻译自:Framework Programming Guide(更新日期:2013-09-17 https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPFrameworks/Frameworks.html#//apple_ref/doc/uid/10000183i 文章目录 一、框架编程指南简介…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
高保真组件库:开关
一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…...
比较数据迁移后MySQL数据库和ClickHouse数据仓库中的表
设计一个MySQL数据库和Clickhouse数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
