基于协同过滤算法的电影推荐
基于协同过滤算法的电影推荐
电影推荐系统使用了基于**协同过滤(Collaborative Filtering)的算法来生成推荐。具体来说,使用了基于用户的协同过滤(User-Based Collaborative Filtering)**算法,步骤如下:
- 数据预处理:将用户对电影的评分数据读入内存,形成一个用户-电影评分矩阵。
- 相似度计算:使用余弦相似度计算目标用户与其他用户之间的相似度。
- 评分预测:根据相似度和其他用户的评分,对目标用户未评分的电影进行评分预测。
- 生成推荐:选取评分预测值最高的前N部电影作为推荐结果。
以下是详细的代码及其解释:
package com.sf;import java.util.*;public class MovieRecommendation {// 示例评分矩阵// 行表示用户,列表示电影// 元素值表示用户对电影的评分,0表示未评分static double[][] ratings = {{4, 0, 0, 5, 1, 0, 0},{5, 5, 4, 0, 0, 0, 0},{0, 0, 0, 2, 4, 5, 0},{0, 3, 0, 0, 0, 0, 3}};// 计算两个用户之间的余弦相似度public static double cosineSimilarity(double[] user1, double[] user2) {double dotProduct = 0.0;double normUser1 = 0.0;double normUser2 = 0.0;for (int i = 0; i < user1.length; i++) {dotProduct += user1[i] * user2[i]; // 计算点积normUser1 += Math.pow(user1[i], 2); // 计算用户1的向量模normUser2 += Math.pow(user2[i], 2); // 计算用户2的向量模}return dotProduct / (Math.sqrt(normUser1) * Math.sqrt(normUser2)); // 返回余弦相似度}// 为特定用户生成电影推荐public static List<Integer> recommendMovies(int userId, int topN) {double[] userRatings = ratings[userId]; // 获取目标用户的评分数据double[] similarityScores = new double[ratings.length]; // 用于存储相似度得分// 计算目标用户与其他所有用户的相似度得分for (int i = 0; i < ratings.length; i++) {if (i != userId) {similarityScores[i] = cosineSimilarity(userRatings, ratings[i]);}}// 计算每部电影的加权得分double[] weightedScores = new double[ratings[0].length];for (int i = 0; i < ratings.length; i++) {if (i != userId) {for (int j = 0; j < ratings[i].length; j++) {weightedScores[j] += similarityScores[i] * ratings[i][j]; // 累加加权得分}}}// 创建一个优先队列,用于存储按得分排序的电影PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> Double.compare(weightedScores[b], weightedScores[a]));// 将未评分的电影加入优先队列for (int i = 0; i < userRatings.length; i++) {if (userRatings[i] == 0) {pq.offer(i);}}// 获取前N部推荐电影List<Integer> recommendedMovies = new ArrayList<>();for (int i = 0; i < topN && !pq.isEmpty(); i++) {recommendedMovies.add(pq.poll());}return recommendedMovies;}public static void main(String[] args) {int userId = 0; // 假设我们为用户ID 0 生成推荐int topN = 3; // 推荐前3部电影List<Integer> recommendations = recommendMovies(userId, topN);// 输出推荐结果System.out.println("推荐给用户 " + userId + " 的电影ID是:" + recommendations);}
}
详细解释
-
数据预处理:代码中的
ratings矩阵是用户对电影的评分数据。行表示不同的用户,列表示不同的电影,元素值表示评分,0表示该用户未对该电影评分。 -
余弦相似度计算:
cosineSimilarity方法用于计算两个用户之间的相似度。公式如下:
其中,A 和 B 是两个用户的评分向量。
-
评分预测和加权得分:
- 对于目标用户,计算其与其他所有用户的相似度得分。
- 使用这些相似度得分和其他用户的评分,计算每部电影的加权得分。加权得分越高,表明该电影越可能受到目标用户的喜爱。
-
生成推荐:
- 将目标用户未评分的电影按加权得分排序,选取得分最高的前N部电影作为推荐结果。
- 使用优先队列来存储和排序未评分的电影,确保获取得分最高的电影。
通过以上步骤,推荐系统可以为目标用户生成个性化的电影推荐列表。
相关文章:
基于协同过滤算法的电影推荐
基于协同过滤算法的电影推荐 电影推荐系统使用了基于**协同过滤(Collaborative Filtering)的算法来生成推荐。具体来说,使用了基于用户的协同过滤(User-Based Collaborative Filtering)**算法,步骤如下&am…...
IEEE754、linear11、linear16浮点数应用原理
IEEE754、linear11、linear16浮点数应用原理 1 浮点数应用1.1 IEEE754 浮点数标准1.2 PMBUS浮点数格式 2 浮点数原理2.1 IEEE754 浮点数解析2.2 PMBUS浮点数解析 3 浮点数代码应用3.1 IEEE754 浮点数应用3.1.1 将浮点变量赋值,直接打印整型(32位…...
6、 垃圾回收 浏览器事件循环
垃圾回收 & 浏览器事件循环 垃圾回收引用计数算法标记清除(mark-sweep)算法标记整理(Mark-Compact)算法 内存管理浏览器事件循环宏任务微任务整体流程 垃圾回收 垃圾回收,又称为:GC(garbag…...
Java多线程面试重点-2
16.Synchronized关键字加在静态方法和实例方法的区别? 修饰静态方法,是对类进行加锁(Class对象),如果该类中有methodA和methodB都是被Synch修饰的静态方法,此时有两个线程T1、T2分别调用methodA()和methodB()&#x…...
LLaMA Factory多卡微调的实战教程(持续更新)
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…...
IOUtils的妙用
查看IOUtils的api文档,它的方法大部分都是重载的,方法的用法总结如下: 方法名使用说明buffer将传入的流进行包装,变成缓冲流。并可以通过参数指定缓冲大小closeQueitly关闭流contentEquals比较两个流中的内容的是否一致copy将输入…...
目标检测——室内服务机器人LifelongSLAM数据集
引言 亲爱的读者们,您是否在寻找某个特定的数据集,用于研究或项目实践?欢迎您在评论区留言,或者通过公众号私信告诉我,您想要的数据集的类型主题。小编会竭尽全力为您寻找,并在找到后第一时间与您分享。 …...
Mysql学习笔记-进阶篇
一、存储引擎 1、MYSQL体系结构 连接层、服务层、引擎层、存储层; 2、存储引擎简介 存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎是基于表的,而不是库的,所以存储引擎也可被称为表类型。 1)在创…...
AI写真:ControlNet 之 InstantID
但是 IPAdapter-FaceId 目前只在 SD 1.5 模型上表现较好,SDXL 模型上的表现较差,不能用于实际生产。可是很多同学已经在使用SDXL了,而且SDXL确实整体上出图效果更好,怎么办? 这篇文章就来给大家介绍一个在SDXL中创作A…...
单元测试的思考与实践
1. 什么是单元测试 通常来说单元测试,是一种自动化测试,同时包含一下特性: 验证很小的一段代码(业务意义 或者 代码逻辑 上不可再分割的单元),能够更准确的定位到问题代码的位置 能够快速运行(…...
C# Socket通讯简单Demo
C# Socket通讯简单Demo Client端Listener端 Client端 static void Main(string[] args) {XSocketService XSocketService new XSocketService();XSocketService.Init();while (true){Console.Write("请输入消息:");var msg Console.ReadLine();XSocket…...
视频融合共享平台LntonCVS视频监控管理平台技术方案详细介绍
LntonCVS国标视频综合管理平台是一款以视频为核心的智慧物联应用平台。它基于分布式、负载均衡等流媒体技术进行开发,提供广泛兼容、安全可靠、开放共享的视频综合服务。该平台具备多种功能,包括视频直播、录像、回放、检索、云存储、告警上报、语音对讲…...
C#ListView的单元格支持添加基本及自定义任意控件
功能说明 使用ListView时,希望可以在单元格显示图片或其他控件,发现原生的ListView不支持,于是通过拓展,实现ListView可以显示任意控件的功能,效果如下: 实现方法 本来想着在单元格里面实现控件的自绘的…...
数据库选型实践:如何避开分库分表痛点 | OceanBase用户实践
随着企业业务的不断发展,数据量往往呈现出快速的增长趋势。使用MySQL的用户面对这种增长,普遍选择采用分库分表技术作为应对方案。然而,这一方案常在后期会遇到很多痛点。 分库分表的痛点 痛点 1:难以保证数据一致性。由于分库分…...
3个火火火的AI项目,开源了!
友友们,今天我要给你们安利三个超酷的开源项目,它们都和AI有关,而且每一个都能让你的日常生活变得更加有趣和便捷!(最近AI绘图又又超神了,分享以下美图养眼) 01 字节出品,文字转语音Seed-TTS 字节推出了一…...
算法 | 子集数排列树满m叉树二分搜索归并排序快速排序
子集树:O(2^n) 一个序列的所有子集为2^n,即可看成具有2^n个叶节点的满二叉树 int backtrack(int k) //k表示扩展结点在解空间树中所处的层次 {if(k>n) //n标识问题的规模output(x); //x是存放当前解的一维数组if(constraint(k)…...
SpringBoot配置第三方专业缓存技术jetcache方法缓存方案
jetcache方法缓存 我们可以给每个方法配置缓存方案 JetCache 是一个基于 Java 的缓存库,支持多种缓存方案和缓存策略,主要用于提升应用程序的性能和响应速度。它提供了多种缓存模式和特性,可以根据需求选择合适的缓存方案。 JetCache 的主…...
游戏开发丨基于PyGame的消消乐小游戏
文章目录 写在前面PyGame消消乐注意事项系列文章写在后面 写在前面 本期内容:基于pygame实现喜羊羊与灰太狼版消消乐小游戏 下载地址:https://download.csdn.net/download/m0_68111267/88700193 实验环境 python3.11及以上pycharmpygame 安装pygame…...
软件项目管理概述
1.什么是项目? 2.项目管理的定义 3.项目管理的本质 4.项目成功的标志 5.项目管理的基本方法 6.项目的生命周期(启动 计划 执行 控制 结束) 7.结合生活中的某件事,谈谈项目管理的作用 项目管理在日常生活中扮演着重要的角色&…...
FastAdmin后台开发框架 lang 任意文件读取漏洞复现
0x01 产品简介 FastAdmin是一款基于PHPBootstrap的开源后台框架,专为开发者精心打造。它基于ThinkPHP和Bootstrap两大主流技术构建,拥有完善的权限管理系统和一键生成CRUD等强大功能。FastAdmin致力于提高开发效率,降低开发成本,…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...
企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
6.9-QT模拟计算器
源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...
