2713. 矩阵中严格递增的单元格数
题目
给定一个 m x n 的整数矩阵 mat
,我们需要找出从某个单元格出发可以访问的最大单元格数量。移动规则是可以从当前单元格移动到同一行或同一列的任何其他单元格,但目标单元格的值必须严格大于当前单元格的值。需要返回最大可访问的单元格数量。
示例
示例 1:
输入:mat = [[3,1],[3,4]]
输出:2
解释:从第 1 行、第 2 列的单元格开始,可以访问 2 个单元格。
示例 2:
输入:mat = [[1,1],[1,1]]
输出:1
解释:由于目标单元格必须严格大于当前单元格,只能访问 1 个单元格。
示例 3:
输入:mat = [[3,1,6],[-9,5,7]]
输出:4
解释:从第 2 行、第 1 列的单元格开始,可以访问 4 个单元格。
提示
m == mat.length
n == mat[i].length
1 <= m, n <= 10^5
1 <= m * n <= 10^5
-10^5 <= mat[i][j] <= 10^5
解决方案
采用深度优先搜索(DFS)结合动态规划(DP)来解决此问题。用 dp[i][j]
表示从位置 (i, j)
出发可以访问的最大单元格数。
代码
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>#define MAX(a,b) ((a) > (b) ? (a) : (b))int matSize, matColSize;
int **mat, **dp;bool isValid(int x, int y) {return x >= 0 && x < matSize && y >= 0 && y < matColSize;
}int dfs(int x, int y) {if (dp[x][y] != 0) return dp[x][y];int maxLen = 1;for (int col = 0; col < matColSize; col++) {if (col != y && mat[x][col] > mat[x][y]) {maxLen = MAX(maxLen, 1 + dfs(x, col));}}for (int row = 0; row < matSize; row++) {if (row != x && mat[row][y] > mat[x][y]) {maxLen = MAX(maxLen, 1 + dfs(row, y));}}dp[x][y] = maxLen;return maxLen;
}int maxIncreasingCells(int** matrix, int matrixSize, int* matrixColSize){mat = matrix;matSize = matrixSize;matColSize = *matrixColSize;dp = (int**)calloc(matSize, sizeof(int*));for (int i = 0; i < matSize; i++) {dp[i] = (int*)calloc(matColSize, sizeof(int));}int maxCells = 0;for (int i = 0; i < matSize; i++) {for (int j = 0; j < matColSize; j++) {maxCells = MAX(maxCells, dfs(i, j));}}for (int i = 0; i < matSize; i++) {free(dp[i]);}free(dp);return maxCells;
}
实现步骤
1. 初始化和输入处理
读取输入矩阵,并初始化 dp
数组。dp[i][j]
用于存储从位置 (i, j)
出发可以访问的最大单元格数。
int matSize, matColSize;
int **mat, **dp;dp = (int**)calloc(matSize, sizeof(int*));
for (int i = 0; i < matSize; i++) {dp[i] = (int*)calloc(matColSize, sizeof(int));
}
2. 定义有效移动检查函数
检查从当前单元格移动到目标单元格是否合法,即目标单元格的值必须严格大于当前单元格的值。
bool isValid(int x, int y) {return x >= 0 && x < matSize && y >= 0 && y < matColSize;
}
3. 深度优先搜索(DFS)
- 若
dp[x][y]
已计算,直接返回。 - 遍历同一行和同一列中的单元格,若满足条件,递归计算并更新
dp[x][y]
。
int dfs(int x, int y) {if (dp[x][y] != 0) return dp[x][y];int maxLen = 1;// 遍历同一行中的其他单元格for (int col = 0; col < matColSize; col++) {if (col != y && mat[x][col] > mat[x][y]) {maxLen = MAX(maxLen, 1 + dfs(x, col));}}// 遍历同一列中的其他单元格for (int row = 0; row < matSize; row++) {if (row != x && mat[row][y] > mat[x][y]) {maxLen = MAX(maxLen, 1 + dfs(row, y));}}dp[x][y] = maxLen;return maxLen;
}
4. 主逻辑
- 遍历矩阵每个单元格,计算从每个单元格出发可以访问的最大单元格数。
- 更新并返回全局最大值。
int maxIncreasingCells(int** matrix, int matrixSize, int* matrixColSize){mat = matrix;matSize = matrixSize;matColSize = *matrixColSize;dp = (int**)calloc(matSize, sizeof(int*));for (int i = 0; i < matSize; i++) {dp[i] = (int*)calloc(matColSize, sizeof(int));}int maxCells = 0;// 遍历每个单元格for (int i = 0; i < matSize; i++) {for (int j = 0; j < matColSize; j++) {maxCells = MAX(maxCells, dfs(i, j));}}for (int i = 0; i < matSize; i++) {free(dp[i]);}free(dp);return maxCells;
}
复杂度分析
- 时间复杂度:O(m * n),每个单元格只被访问一次。
- 空间复杂度:O(m * n),用于存储
dp
数组。
结果
我尽力了。。。不愧是困难提题目
贴一个优化前的代码
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#define MAX(a,b) ((a) > (b) ? (a) : (b))
int gotoNext(int** dp, int matSize, int* matColSize, int** mat, int beginCol, int beginRow, int* tmpStepCnt, bool** isVisited)
{if(dp[beginCol][beginRow] != 0){(*tmpStepCnt) += dp[beginCol][beginRow];return (*tmpStepCnt);}(*tmpStepCnt)++;isVisited[beginCol][beginRow] = true;int tmp_left = 0, tmp_right = 0, tmp_up = 0, tmp_down = 0;int left = 0, right = 0, up = 0, down = 0;int cnt = 0;for (int i = 1; i < matSize; i++){if(beginCol + i <= matSize - 1 && !isVisited[beginCol + i][beginRow] && mat[beginCol + i][beginRow] > mat[beginCol][beginRow]) {tmp_right = gotoNext(dp, matSize, matColSize, mat, beginCol + i, beginRow, &cnt, isVisited);right = MAX(tmp_right, right);cnt = 0;// printf("right = %d\n",right);}else{// // printf("cant goto [%d][%d]\n",beginCol + i, beginRow);}if(beginCol - i >= 0 && !isVisited[beginCol - i][beginRow] && mat[beginCol - i][beginRow] > mat[beginCol][beginRow]) {tmp_left = gotoNext(dp, matSize, matColSize, mat, beginCol - i, beginRow, &cnt, isVisited);left = MAX(tmp_left, left);cnt = 0;// printf("left = %d\n",left);}else{// // printf("cant goto [%d][%d]\n",beginCol - i, beginRow);}}for (int i = 1; i < (*matColSize); i++){if(beginRow + i <= (*matColSize) - 1 && !isVisited[beginCol][beginRow + i] && mat[beginCol][beginRow + i] > mat[beginCol][beginRow]) {tmp_down = gotoNext(dp, matSize, matColSize, mat, beginCol, beginRow + i, &cnt, isVisited);down = MAX(tmp_down, down);cnt = 0;// printf("down = %d\n",down);}else{// // printf("cant goto [%d][%d]\n",beginCol, beginRow + i);}if(beginRow - i >= 0 && !isVisited[beginCol][beginRow - i] && mat[beginCol][beginRow - i] > mat[beginCol][beginRow]){tmp_up = gotoNext(dp, matSize, matColSize, mat, beginCol, beginRow - i, &cnt, isVisited);up = MAX(tmp_up, up);cnt = 0;// printf("up = %d\n",up);}else{// // printf("cant goto [%d][%d]\n",i, beginRow - i);}}isVisited[beginCol][beginRow] = false;(*tmpStepCnt) += MAX(MAX(left, right), MAX(up, down));return (*tmpStepCnt);
}int maxIncreasingCells(int** mat, int matSize, int* matColSize){int stepCnt = 0;int **dp = (int**)calloc(matSize, sizeof(int*)); // 记录从某个格子开始走,可以走多少个格子。bool **isVisited = (bool**)calloc(matSize, sizeof(bool*)); // 记录某个格子是否被访问,防止死循环。for (int i = 0; i < matSize; i++){dp[i] = (int*)calloc((*matColSize), sizeof(int)); // 记录从某个格子开始走,可以走多少个格子。isVisited[i] = (bool*)calloc((*matColSize), sizeof(bool)); // 记录某个格子是否被访问,防止死循环。}for (int i = 0; i < matSize; i++){for (int j = 0; j < (*matColSize); j++){int tmpStepCnt = 0;tmpStepCnt = gotoNext(dp, matSize, matColSize, mat, i, j, &tmpStepCnt, isVisited);stepCnt = MAX(tmpStepCnt, stepCnt);dp[i][j] = tmpStepCnt;// printf("dp[%d][%d] = %d\n", i,j,dp[i][j]);}}return stepCnt;
}
这个更惨,
相关文章:

2713. 矩阵中严格递增的单元格数
题目 给定一个 m x n 的整数矩阵 mat,我们需要找出从某个单元格出发可以访问的最大单元格数量。移动规则是可以从当前单元格移动到同一行或同一列的任何其他单元格,但目标单元格的值必须严格大于当前单元格的值。需要返回最大可访问的单元格数量。 示例…...
git创建子模块
有种情况我们经常会遇到:某个工作中的项目需要包含并使用另一个项目。 也许是第三方库,或者你独立开发的,用于多个父项目的库。 现在问题来了:你想要把它们当做两个独立的项目,同时又想在一个项目中使用另一个。 Git …...

把Deepin塞进U盘,即插即用!Deepin To Go来袭
前言 小伙伴之前在某篇文章下留言说:把Deepin塞进U盘的教程。 这不就来了吗? 事实是可以的。这时候你要先做点小准备: 一个大小为8GB或以上的普通U盘 一个至少64GB或以上的高速U盘 一个Deepin系统镜像文件 普通U盘的大概介绍࿱…...
给【AI硬件】创业者的论文、开源项目和产品整理
一、AI 硬件精选论文 《DrEureka: Language Model Guided Sim-To-Real Transfer》 瑜伽球上遛「狗」这项研究由宾夕法尼亚大学、 NVIDIA 、得克萨斯大学奥斯汀分校的研究者联合打造,并且完全开源。他们提出了 DrEureka(域随机化 Eureka)&am…...
模拟面试题卷二
1. 什么是JavaEE框架,你能列举一些常用的JavaEE框架吗? 答:JavaEE框架是一套用于开发企业级应用的技术规范和工具集合。常用的JavaEE框架有Spring、Hibernate、Struts、JSF等。 2. 请解释一下面向对象技术和设计原则是什么,你能…...

22种常用设计模式示例代码
文章目录 创建型模式结构型模式行为模式 仓库地址https://github.com/Xiamu-ssr/DesignPatternsPractice 参考教程 refactoringguru设计模式-目录 创建型模式 软件包复杂度流行度工厂方法factorymethod❄️⭐️⭐️⭐️抽象工厂abstractfactory❄️❄️⭐️⭐️⭐️生成器bui…...
Java面试题:对比ArrayList和LinkedList的内部实现,以及它们在不同场景下的适用性
ArrayList和LinkedList是Java中常用的两个List实现,它们在内部实现和适用场景上有很大差异。下面是详细的对比分析: 内部实现 ArrayList 数据结构:内部使用动态数组(即一个可变长的数组)实现。存储方式:…...

ping: www.baidu.com: 未知的名称或服务(IP号不匹配)
我用的是VMware上的Red Hat Enterprise Linux 9,出现了能联网但ping不通外网的情况。 问题描述:设置中显示正常连接,而且虚拟机右上角有联网的图标,但不能通外网。 按照网上教程修改了/etc/resolv.conf和/etc/sysconfig/network-…...
谷神前端组件增强:子列表
谷神Ag-Grid导出Excel // 谷神Ag-Grid导出Excel let allDiscolumns detailTable.getAllDisColumns() let columnColIds columns.map(column > column.colId) let columnKeys columnColIds.filter(item > ![select, "_OPT_FIELD_"].includes(item)) detailT…...
测试cudaStream队列的深度
测试cudaStream队列的深度 一.代码二.编译运行[得出队列深度为512] 以下代码片段用于测试cudaStream队列的深度 方法: 主线程一直发任务,启一个线程cudaEventQuery查询已完成的任务,二个计数器的值相减 一.代码 #include <iostream> #include <thread> #include …...

海康威视 isecure center 综合安防管理平台任意文件上传漏洞
文章目录 前言声明一、漏洞描述二、影响版本三、漏洞复现四、修复方案 前言 海康威视是以视频为核心的智能物联网解决方案和大数据服务提供商,业务聚焦于综合安防、大数据服务和智慧业务。 海康威视其产品包括摄像机、多屏控制器、交通产品、传输产品、存储产品、门禁产品、消…...

shadertoy-安装和使用
一、安装vscode 安装vscode流程 二、安装插件 1.安装glsl编辑插件 2.安装shader toy插件 三、创建glsl文件 test.glsl文件 float Grid(float size, vec2 fragCoord) {vec2 r fragCoord / size;vec2 grid abs(fract(r - 0.5) - 0.5) / fwidth(r);float line min(grid…...

matlab线性多部法求常微分方程数值解
用Adamas内差二步方法,内差三步方法,外差二步方法,外差三步方法这四种方法计算。 中k为1和2. k为2和3 代码 function chap1_adams_methodu0 1; T 2; h 0.1; N T/h; t 0:h:T; solu exact1(t);f f1; u_inter_2s adams_inter_2steps(…...

前端页面实现【矩阵表格与列表】
实现页面: 1.动态表绘制(可用于矩阵构建) <template><div><h4><b>基于层次分析法的权重计算</b></h4><table table-layout"fixed"><thead><tr><th v-for"(_, colI…...
GPT4v和Gemini-Pro调用对比
要调用 GPT-4 Vision (GPT-4V) 和 Gemini-Pro,以下是详细的步骤分析,包括调用流程、API 使用方法和两者之间的区别,以及效果对比和示例。 GPT-4 Vision (GPT-4V) 调用步骤 GPT-4 Vision 主要通过 OpenAI 的 API 进行调用,用于处…...

破布叶(Microcos paniculata)单倍型染色体级别基因组-文献精读22
Haplotype-resolved chromosomal-level genome assembly of Buzhaye (Microcos paniculata) 破布叶、布渣叶(Microcos paniculata)单倍型解析染色体级别基因组组装 摘要 布渣叶(Microcos paniculata)是一种传统上用作民间药物和…...

浅谈RC4
一、什么叫RC4?优点和缺点 RC4是对称密码(加密解密使用同一个密钥)算法中的流密码(一个字节一个字节的进行加密)加密算法。 优点:简单、灵活、作用范围广,速度快 缺点:安全性能较差&…...
uniapp微信小程序开发物料
开发工具 HBuilder: HBuilderX-高效极客技巧 vscode 1、在vscode中新建一个项目npx degit dcloudio/uni-preset-vue#vite-ts 项目名称 2、在HBuilder中可以可视化进行新建项目 路由 在app.json文件中配置pages路由路径 路由跳转方法 uni.navigateTo(OBJECT)…...

大数据工程师如何做到数据可视化?
好的数据可视化作品都是通过不断的数据对比分析实战出来的。 今天给大家带来一篇大数据工程师干货,从多角度解析做数据可视化的重要性,并解读一些适用的应用场景。大数据工程师们刷到这篇文章时一定要进来看看,满满的干货。 目录 1. 什么是数…...
Java 序列化与反序列化
Java 序列化是一种将对象的状态转换为字节流的机制,以便可以将该对象的状态保存到文件、数据库或通过网络传输。在反序列化过程中,这些字节流可以被重新转换为对象。序列化主要用于以下几种情况: 持久化存储:将对象的状态保存到文…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...