决策树算法详细介绍原理和实现
决策树是一种常用的分类算法,它通过一系列的问题将数据分割成不同的分支,最终确定数据属于哪个类别。下面是决策树的原理、实现方式以及一个案例实现的详细介绍。
决策树原理
- 特征选择:决策树的构建过程首先需要选择一个特征作为节点,这个特征能够最好地将数据分为不同的类别。
- 分裂准则:选择特征的依据是分裂准则,常用的有信息增益(ID3算法)、信息增益率(C4.5算法)和基尼不纯度(CART算法)。
- 递归构建:以选择的特征为节点,递归地对数据集进行分割,直到满足停止条件,如所有数据点都属于同一类别,或没有更多的特征可供选择。
- 剪枝:为了防止过拟合,决策树需要进行剪枝,剪枝可以是预剪枝(在构建过程中剪枝)或后剪枝(构建完成后剪枝)。
决策树实现方式
- ID3算法:使用信息增益作为分裂准则,选择信息增益最大的特征进行分裂。
- C4.5算法:在ID3的基础上改进,使用信息增益率作为分裂准则,解决了ID3对某些特征偏好的问题。
- CART算法:使用基尼不纯度作为分裂准则,可以处理分类和回归问题。
案例实现
假设我们有一个简单的数据集,用于判断一个人是否会购买保险,特征包括年龄、收入和婚姻状况。
| ID | 年龄 | 收入 | 婚姻状况 | 是否购买保险 |
|---|---|---|---|---|
| 1 | 25 | 高 | 未婚 | 否 |
| 2 | 30 | 中 | 已婚 | 是 |
| 3 | 35 | 高 | 已婚 | 是 |
| ... | ... | ... | ... | ... |
步骤1:特征选择
使用信息增益作为分裂准则,计算每个特征的信息增益,选择信息增益最大的特征作为节点。
步骤2:构建树
根据选择的特征对数据集进行分裂,递归地对每个子集重复步骤1和步骤2,直到满足停止条件。
步骤3:剪枝
对构建好的树进行剪枝,以防止过拟合。
步骤4:使用树进行预测
使用构建好的决策树对新数据进行分类预测。
Python实现示例
使用sklearn库中的DecisionTreeClassifier来实现决策树:
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 创建决策树分类器实例
clf = DecisionTreeClassifier()# 训练模型
clf.fit(X, y)# 预测
print(clf.predict([[5.1, 3.5, 1.4, 0.2]]))
这个例子使用了鸢尾花数据集(Iris dataset),这是一个经典的多类分类问题。我们首先加载数据集,然后创建一个决策树分类器实例,接着训练模型,并使用训练好的模型进行预测。
请注意,实际应用中需要对数据进行预处理,选择合适的特征,以及调整模型参数以获得最佳性能。此外,还需要对模型进行评估和验证。
相关文章:
决策树算法详细介绍原理和实现
决策树是一种常用的分类算法,它通过一系列的问题将数据分割成不同的分支,最终确定数据属于哪个类别。下面是决策树的原理、实现方式以及一个案例实现的详细介绍。 决策树原理 特征选择:决策树的构建过程首先需要选择一个特征作为节点&#…...
vue:vue2与vue3如何全局注册公共组件(包括涉及到的相关方法函数的讲解)
目录 第一章 vue2全局注册公共组件 1.1 方法一:逐个注册 1.2 方法二:批量注册 1.2.1 require.context()方法解释 第二章 vue3全局注册公共组件 1.1 方法一:逐个注册 1.2 方法二:批量注册 第一章 vue2全局注册公共组件 Vue…...
LoRa126X系列LoRa模块:专为物联网设计而生
LoRa126X是思为无线研发的一款应用于物联网应用的LoRa 前端模块系列,采用 Semtech 公司的 SX1262和SX1268 芯片。该系列模块具有小体积、低功耗,高灵敏度等特点,并且严格遵循无铅工艺生产和测试流程,符合 RoHS 和 Reach 环保标准。…...
个人职业规划(含前端职业线路、前端技术线路、前端核心竞争力、大龄程序员的出路)
1. 了解自己的兴趣与长处 喜欢擅长的事 职业方向 2. 设定长期目标(5年) 目标内容 建立自己的品牌建立自己的社交网络 适量参加社交活动,认识更多志同道合的小伙伴寻求导师指导 建立自己的作品集 注意事项 每年元旦进行审视和调整永葆积极…...
【设计模式深度剖析】【10】【行为型】【状态模式】
👈️上一篇:访问者模式 | 下一篇:解释器模式👉️ 设计模式-专栏👈️ 文章目录 状态模式定义英文定义直译如何理解呢? 状态模式的角色Context(环境类)State(抽象状态类)Concret…...
API低代码平台介绍5-数据库记录修改功能
数据库记录修改功能 在上篇文章中我们介绍了如何插入数据库记录,本篇文章会沿用上篇文章的测试数据,介绍如何使用ADI平台定义一个修改目标数据库记录的接口,包括 单主键单表修改、复合主键单表修改、多表修改(整合前两者ÿ…...
git commit撤销修改
背景 如果提交了代码,却发现有不需要提交的文件。这时候如何修改呢?可以用git reset指令。 git reset用法解释 git reset 命令用于回退版本,可以指定退回某一次提交的版本。 git reset 命令语法格式如下: git reset [--soft …...
深入理解RunLoop
RunLoop 是 iOS 和 OSX 开发中非常基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。之后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。 一…...
Elasticsearch term 查询:精确值搜索
一、引言 Elasticsearch 是一个功能强大的搜索引擎,它支持全文搜索、结构化搜索等多种搜索方式。在结构化搜索中,term 查询是一种常用的查询方式,用于在索引中查找与指定值完全匹配的文档。本文将详细介绍 term 查询的工作原理、使用场景以及…...
IntelliJ IDEA调试技巧
IntelliJ IDEA高级调试技巧 假设我们在UserService类的getUserAndCheckStatus方法中遇到了难以追踪的问题。以下是在IntelliJ IDEA中进行高效调试的一些进阶技巧: 1. 条件断点(Conditional Breakpoint) 如果你知道问题只在特定条件下出现&…...
NGINX_六 nginx 日志文件详解
六 nginx 日志文件详解 nginx 日志文件分为 **log_format** 和 **access_log** 两部分log_format 定义记录的格式,其语法格式为log_format 样式名称 样式详情配置文件中默认有log_format main $remote_addr - $remote_user [time_local] "req…...
第6章 工程项目融资 作业
第6章 工程项目融资 作业 一单选题(共2题,40分) (单选题) 项目资金结构不包括( )。 A.项目债务资金结构比例 B. 项目建设投资与工程项目总成本费用的比例 C. 项目资本金内部结构比例 D. 项目资本金与债务资金的比例 正…...
网站安全防护怎么做?
引言:在当今数字化的时代,网络安全已经成为个人、企业乃至整个社会的一项关键挑战。随着互联网的普及和信息技术的迅猛发展,我们的生活和工作方式日益依赖于各种互联网服务和数据交换。然而,这种依赖也带来了越来越多的安全威胁和…...
泵设备的监测控制和智慧运维
泵是一种输送流体或使流体增压的机械。它通过各种工作原理(如离心、柱塞等)将机械能转换为流体的动能或压力能,从而实现液体的输送、提升、循环等操作。 泵的一些具体应用场景: 1.智能水务:在城市供水管网中ÿ…...
【智能算法应用】基于混合粒子群-蚁群算法的多机器人多点送餐路径规划问题
目录 1.算法原理2.数学模型3.结果展示4.参考文献5.代码获取 1.算法原理 【智能算法】粒子群算法(PSO)原理及实现 配餐顺序: 采用混合粒子群算法 || 路径规划: 采用蚁群算法 2.数学模型 餐厅送餐多机器人多点配送路径规划&…...
Java中的JVM调优技巧
Java中的JVM调优技巧 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! Java虚拟机(JVM)是Java应用程序的核心组件,负责将Jav…...
软件工程-第4章结构化编码和测试
软件的实现阶段:软件编码,单元测试和综合测试。 软件编码是对软件设计的进一步具体化,其任务是将设计表示变换成用程序设计语言编写的程序。 软件测试是软件质量保证的重要手段,要成功开发出高质量的软件产品,必须认…...
MMDetection 目标检测 —— 环境搭建和基础使用
参考文档 开始你的第一步 — MMDetection 3.3.0 文档 依赖 步骤 0. 下载并安装 Anaconda。 步骤 1. 创建并激活一个 conda 环境。(我选择的是python3.10) conda create --name openmmlab python3.8 -y conda activate openmmlab 步骤 2. 基于 PyTo…...
C# 实现draw一个简单的温度计
运行结果 概述: 代码分析 该控件主要包含以下几个部分: 属性定义: MinValue:最低温度值。 MaxValue:最高温度值。 CurrentValue:当前温度值。 构造函数: 设置了一些控件样式来提升绘制效果…...
解放双手,让流程自动化软件助你一臂之力
本文将介绍流程自动化软件/脚本/助手的用途,同时我也做个自我介绍: 🏆 技术专长:专注于自动化脚本、网站、小程序、软件、爬虫及数据采集的定制化开发,为客户提供全方位的数字化解决方案。 💼 行业经验&…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
