当前位置: 首页 > news >正文

决策树算法详细介绍原理和实现

        决策树是一种常用的分类算法,它通过一系列的问题将数据分割成不同的分支,最终确定数据属于哪个类别。下面是决策树的原理、实现方式以及一个案例实现的详细介绍。

决策树原理

  1. 特征选择:决策树的构建过程首先需要选择一个特征作为节点,这个特征能够最好地将数据分为不同的类别。
  2. 分裂准则:选择特征的依据是分裂准则,常用的有信息增益(ID3算法)、信息增益率(C4.5算法)和基尼不纯度(CART算法)。
  3. 递归构建:以选择的特征为节点,递归地对数据集进行分割,直到满足停止条件,如所有数据点都属于同一类别,或没有更多的特征可供选择。
  4. 剪枝:为了防止过拟合,决策树需要进行剪枝,剪枝可以是预剪枝(在构建过程中剪枝)或后剪枝(构建完成后剪枝)。

决策树实现方式

  1. ID3算法:使用信息增益作为分裂准则,选择信息增益最大的特征进行分裂。
  2. C4.5算法:在ID3的基础上改进,使用信息增益率作为分裂准则,解决了ID3对某些特征偏好的问题。
  3. CART算法:使用基尼不纯度作为分裂准则,可以处理分类和回归问题。

案例实现

假设我们有一个简单的数据集,用于判断一个人是否会购买保险,特征包括年龄、收入和婚姻状况。

ID年龄收入婚姻状况是否购买保险
125未婚
230已婚
335已婚
...............
步骤1:特征选择

使用信息增益作为分裂准则,计算每个特征的信息增益,选择信息增益最大的特征作为节点。

步骤2:构建树

根据选择的特征对数据集进行分裂,递归地对每个子集重复步骤1和步骤2,直到满足停止条件。

步骤3:剪枝

对构建好的树进行剪枝,以防止过拟合。

步骤4:使用树进行预测

使用构建好的决策树对新数据进行分类预测。

Python实现示例

使用sklearn库中的DecisionTreeClassifier来实现决策树:

from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 创建决策树分类器实例
clf = DecisionTreeClassifier()# 训练模型
clf.fit(X, y)# 预测
print(clf.predict([[5.1, 3.5, 1.4, 0.2]]))

        这个例子使用了鸢尾花数据集(Iris dataset),这是一个经典的多类分类问题。我们首先加载数据集,然后创建一个决策树分类器实例,接着训练模型,并使用训练好的模型进行预测。

        请注意,实际应用中需要对数据进行预处理,选择合适的特征,以及调整模型参数以获得最佳性能。此外,还需要对模型进行评估和验证。

相关文章:

决策树算法详细介绍原理和实现

决策树是一种常用的分类算法,它通过一系列的问题将数据分割成不同的分支,最终确定数据属于哪个类别。下面是决策树的原理、实现方式以及一个案例实现的详细介绍。 决策树原理 特征选择:决策树的构建过程首先需要选择一个特征作为节点&#…...

vue:vue2与vue3如何全局注册公共组件(包括涉及到的相关方法函数的讲解)

目录 第一章 vue2全局注册公共组件 1.1 方法一:逐个注册 1.2 方法二:批量注册 1.2.1 require.context()方法解释 第二章 vue3全局注册公共组件 1.1 方法一:逐个注册 1.2 方法二:批量注册 第一章 vue2全局注册公共组件 Vue…...

LoRa126X系列LoRa模块:专为物联网设计而生

LoRa126X是思为无线研发的一款应用于物联网应用的LoRa 前端模块系列,采用 Semtech 公司的 SX1262和SX1268 芯片。该系列模块具有小体积、低功耗,高灵敏度等特点,并且严格遵循无铅工艺生产和测试流程,符合 RoHS 和 Reach 环保标准。…...

个人职业规划(含前端职业线路、前端技术线路、前端核心竞争力、大龄程序员的出路)

1. 了解自己的兴趣与长处 喜欢擅长的事 职业方向 2. 设定长期目标(5年) 目标内容 建立自己的品牌建立自己的社交网络 适量参加社交活动,认识更多志同道合的小伙伴寻求导师指导 建立自己的作品集 注意事项 每年元旦进行审视和调整永葆积极…...

【设计模式深度剖析】【10】【行为型】【状态模式】

👈️上一篇:访问者模式 | 下一篇:解释器模式👉️ 设计模式-专栏👈️ 文章目录 状态模式定义英文定义直译如何理解呢? 状态模式的角色Context(环境类)State(抽象状态类)Concret…...

API低代码平台介绍5-数据库记录修改功能

数据库记录修改功能 在上篇文章中我们介绍了如何插入数据库记录,本篇文章会沿用上篇文章的测试数据,介绍如何使用ADI平台定义一个修改目标数据库记录的接口,包括 单主键单表修改、复合主键单表修改、多表修改(整合前两者&#xff…...

git commit撤销修改

背景 如果提交了代码,却发现有不需要提交的文件。这时候如何修改呢?可以用git reset指令。 git reset用法解释 git reset 命令用于回退版本,可以指定退回某一次提交的版本。 git reset 命令语法格式如下: git reset [--soft …...

深入理解RunLoop

RunLoop 是 iOS 和 OSX 开发中非常基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。之后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。 一…...

Elasticsearch term 查询:精确值搜索

一、引言 Elasticsearch 是一个功能强大的搜索引擎,它支持全文搜索、结构化搜索等多种搜索方式。在结构化搜索中,term 查询是一种常用的查询方式,用于在索引中查找与指定值完全匹配的文档。本文将详细介绍 term 查询的工作原理、使用场景以及…...

IntelliJ IDEA调试技巧

IntelliJ IDEA高级调试技巧 假设我们在UserService类的getUserAndCheckStatus方法中遇到了难以追踪的问题。以下是在IntelliJ IDEA中进行高效调试的一些进阶技巧: 1. 条件断点(Conditional Breakpoint) 如果你知道问题只在特定条件下出现&…...

NGINX_六 nginx 日志文件详解

六 nginx 日志文件详解 nginx 日志文件分为 **log_format** 和 **access_log** 两部分log_format 定义记录的格式,其语法格式为log_format 样式名称 样式详情配置文件中默认有log_format main $remote_addr - $remote_user [time_local] "req…...

第6章 工程项目融资 作业

第6章 工程项目融资 作业 一单选题(共2题,40分) (单选题) 项目资金结构不包括( )。 A.项目债务资金结构比例 B. 项目建设投资与工程项目总成本费用的比例 C. 项目资本金内部结构比例 D. 项目资本金与债务资金的比例 正…...

网站安全防护怎么做?

引言:在当今数字化的时代,网络安全已经成为个人、企业乃至整个社会的一项关键挑战。随着互联网的普及和信息技术的迅猛发展,我们的生活和工作方式日益依赖于各种互联网服务和数据交换。然而,这种依赖也带来了越来越多的安全威胁和…...

泵设备的监测控制和智慧运维

泵是一种输送流体或使流体增压的机械。它通过各种工作原理(如离心、柱塞等)将机械能转换为流体的动能或压力能,从而实现液体的输送、提升、循环等操作。 泵的一些具体应用场景: 1.智能水务:在城市供水管网中&#xff…...

【智能算法应用】基于混合粒子群-蚁群算法的多机器人多点送餐路径规划问题

目录 1.算法原理2.数学模型3.结果展示4.参考文献5.代码获取 1.算法原理 【智能算法】粒子群算法(PSO)原理及实现 配餐顺序: 采用混合粒子群算法 || 路径规划: 采用蚁群算法 2.数学模型 餐厅送餐多机器人多点配送路径规划&…...

Java中的JVM调优技巧

Java中的JVM调优技巧 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! Java虚拟机(JVM)是Java应用程序的核心组件,负责将Jav…...

软件工程-第4章结构化编码和测试

软件的实现阶段:软件编码,单元测试和综合测试。 软件编码是对软件设计的进一步具体化,其任务是将设计表示变换成用程序设计语言编写的程序。 软件测试是软件质量保证的重要手段,要成功开发出高质量的软件产品,必须认…...

MMDetection 目标检测 —— 环境搭建和基础使用

参考文档 开始你的第一步 — MMDetection 3.3.0 文档 依赖 步骤 0. 下载并安装 Anaconda。 步骤 1. 创建并激活一个 conda 环境。(我选择的是python3.10) conda create --name openmmlab python3.8 -y conda activate openmmlab 步骤 2. 基于 PyTo…...

C# 实现draw一个简单的温度计

运行结果 概述: 代码分析 该控件主要包含以下几个部分: 属性定义: MinValue:最低温度值。 MaxValue:最高温度值。 CurrentValue:当前温度值。 构造函数: 设置了一些控件样式来提升绘制效果…...

解放双手,让流程自动化软件助你一臂之力

本文将介绍流程自动化软件/脚本/助手的用途,同时我也做个自我介绍: 🏆 技术专长:专注于自动化脚本、网站、小程序、软件、爬虫及数据采集的定制化开发,为客户提供全方位的数字化解决方案。 💼 行业经验&…...

接口测试中缓存处理策略

在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"&#xff0…...

Robots.txt 文件

什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

基于 TAPD 进行项目管理

起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...