当前位置: 首页 > news >正文

决策树算法详细介绍原理和实现

        决策树是一种常用的分类算法,它通过一系列的问题将数据分割成不同的分支,最终确定数据属于哪个类别。下面是决策树的原理、实现方式以及一个案例实现的详细介绍。

决策树原理

  1. 特征选择:决策树的构建过程首先需要选择一个特征作为节点,这个特征能够最好地将数据分为不同的类别。
  2. 分裂准则:选择特征的依据是分裂准则,常用的有信息增益(ID3算法)、信息增益率(C4.5算法)和基尼不纯度(CART算法)。
  3. 递归构建:以选择的特征为节点,递归地对数据集进行分割,直到满足停止条件,如所有数据点都属于同一类别,或没有更多的特征可供选择。
  4. 剪枝:为了防止过拟合,决策树需要进行剪枝,剪枝可以是预剪枝(在构建过程中剪枝)或后剪枝(构建完成后剪枝)。

决策树实现方式

  1. ID3算法:使用信息增益作为分裂准则,选择信息增益最大的特征进行分裂。
  2. C4.5算法:在ID3的基础上改进,使用信息增益率作为分裂准则,解决了ID3对某些特征偏好的问题。
  3. CART算法:使用基尼不纯度作为分裂准则,可以处理分类和回归问题。

案例实现

假设我们有一个简单的数据集,用于判断一个人是否会购买保险,特征包括年龄、收入和婚姻状况。

ID年龄收入婚姻状况是否购买保险
125未婚
230已婚
335已婚
...............
步骤1:特征选择

使用信息增益作为分裂准则,计算每个特征的信息增益,选择信息增益最大的特征作为节点。

步骤2:构建树

根据选择的特征对数据集进行分裂,递归地对每个子集重复步骤1和步骤2,直到满足停止条件。

步骤3:剪枝

对构建好的树进行剪枝,以防止过拟合。

步骤4:使用树进行预测

使用构建好的决策树对新数据进行分类预测。

Python实现示例

使用sklearn库中的DecisionTreeClassifier来实现决策树:

from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 创建决策树分类器实例
clf = DecisionTreeClassifier()# 训练模型
clf.fit(X, y)# 预测
print(clf.predict([[5.1, 3.5, 1.4, 0.2]]))

        这个例子使用了鸢尾花数据集(Iris dataset),这是一个经典的多类分类问题。我们首先加载数据集,然后创建一个决策树分类器实例,接着训练模型,并使用训练好的模型进行预测。

        请注意,实际应用中需要对数据进行预处理,选择合适的特征,以及调整模型参数以获得最佳性能。此外,还需要对模型进行评估和验证。

相关文章:

决策树算法详细介绍原理和实现

决策树是一种常用的分类算法,它通过一系列的问题将数据分割成不同的分支,最终确定数据属于哪个类别。下面是决策树的原理、实现方式以及一个案例实现的详细介绍。 决策树原理 特征选择:决策树的构建过程首先需要选择一个特征作为节点&#…...

vue:vue2与vue3如何全局注册公共组件(包括涉及到的相关方法函数的讲解)

目录 第一章 vue2全局注册公共组件 1.1 方法一:逐个注册 1.2 方法二:批量注册 1.2.1 require.context()方法解释 第二章 vue3全局注册公共组件 1.1 方法一:逐个注册 1.2 方法二:批量注册 第一章 vue2全局注册公共组件 Vue…...

LoRa126X系列LoRa模块:专为物联网设计而生

LoRa126X是思为无线研发的一款应用于物联网应用的LoRa 前端模块系列,采用 Semtech 公司的 SX1262和SX1268 芯片。该系列模块具有小体积、低功耗,高灵敏度等特点,并且严格遵循无铅工艺生产和测试流程,符合 RoHS 和 Reach 环保标准。…...

个人职业规划(含前端职业线路、前端技术线路、前端核心竞争力、大龄程序员的出路)

1. 了解自己的兴趣与长处 喜欢擅长的事 职业方向 2. 设定长期目标(5年) 目标内容 建立自己的品牌建立自己的社交网络 适量参加社交活动,认识更多志同道合的小伙伴寻求导师指导 建立自己的作品集 注意事项 每年元旦进行审视和调整永葆积极…...

【设计模式深度剖析】【10】【行为型】【状态模式】

👈️上一篇:访问者模式 | 下一篇:解释器模式👉️ 设计模式-专栏👈️ 文章目录 状态模式定义英文定义直译如何理解呢? 状态模式的角色Context(环境类)State(抽象状态类)Concret…...

API低代码平台介绍5-数据库记录修改功能

数据库记录修改功能 在上篇文章中我们介绍了如何插入数据库记录,本篇文章会沿用上篇文章的测试数据,介绍如何使用ADI平台定义一个修改目标数据库记录的接口,包括 单主键单表修改、复合主键单表修改、多表修改(整合前两者&#xff…...

git commit撤销修改

背景 如果提交了代码,却发现有不需要提交的文件。这时候如何修改呢?可以用git reset指令。 git reset用法解释 git reset 命令用于回退版本,可以指定退回某一次提交的版本。 git reset 命令语法格式如下: git reset [--soft …...

深入理解RunLoop

RunLoop 是 iOS 和 OSX 开发中非常基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。之后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。 一…...

Elasticsearch term 查询:精确值搜索

一、引言 Elasticsearch 是一个功能强大的搜索引擎,它支持全文搜索、结构化搜索等多种搜索方式。在结构化搜索中,term 查询是一种常用的查询方式,用于在索引中查找与指定值完全匹配的文档。本文将详细介绍 term 查询的工作原理、使用场景以及…...

IntelliJ IDEA调试技巧

IntelliJ IDEA高级调试技巧 假设我们在UserService类的getUserAndCheckStatus方法中遇到了难以追踪的问题。以下是在IntelliJ IDEA中进行高效调试的一些进阶技巧: 1. 条件断点(Conditional Breakpoint) 如果你知道问题只在特定条件下出现&…...

NGINX_六 nginx 日志文件详解

六 nginx 日志文件详解 nginx 日志文件分为 **log_format** 和 **access_log** 两部分log_format 定义记录的格式,其语法格式为log_format 样式名称 样式详情配置文件中默认有log_format main $remote_addr - $remote_user [time_local] "req…...

第6章 工程项目融资 作业

第6章 工程项目融资 作业 一单选题(共2题,40分) (单选题) 项目资金结构不包括( )。 A.项目债务资金结构比例 B. 项目建设投资与工程项目总成本费用的比例 C. 项目资本金内部结构比例 D. 项目资本金与债务资金的比例 正…...

网站安全防护怎么做?

引言:在当今数字化的时代,网络安全已经成为个人、企业乃至整个社会的一项关键挑战。随着互联网的普及和信息技术的迅猛发展,我们的生活和工作方式日益依赖于各种互联网服务和数据交换。然而,这种依赖也带来了越来越多的安全威胁和…...

泵设备的监测控制和智慧运维

泵是一种输送流体或使流体增压的机械。它通过各种工作原理(如离心、柱塞等)将机械能转换为流体的动能或压力能,从而实现液体的输送、提升、循环等操作。 泵的一些具体应用场景: 1.智能水务:在城市供水管网中&#xff…...

【智能算法应用】基于混合粒子群-蚁群算法的多机器人多点送餐路径规划问题

目录 1.算法原理2.数学模型3.结果展示4.参考文献5.代码获取 1.算法原理 【智能算法】粒子群算法(PSO)原理及实现 配餐顺序: 采用混合粒子群算法 || 路径规划: 采用蚁群算法 2.数学模型 餐厅送餐多机器人多点配送路径规划&…...

Java中的JVM调优技巧

Java中的JVM调优技巧 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! Java虚拟机(JVM)是Java应用程序的核心组件,负责将Jav…...

软件工程-第4章结构化编码和测试

软件的实现阶段:软件编码,单元测试和综合测试。 软件编码是对软件设计的进一步具体化,其任务是将设计表示变换成用程序设计语言编写的程序。 软件测试是软件质量保证的重要手段,要成功开发出高质量的软件产品,必须认…...

MMDetection 目标检测 —— 环境搭建和基础使用

参考文档 开始你的第一步 — MMDetection 3.3.0 文档 依赖 步骤 0. 下载并安装 Anaconda。 步骤 1. 创建并激活一个 conda 环境。(我选择的是python3.10) conda create --name openmmlab python3.8 -y conda activate openmmlab 步骤 2. 基于 PyTo…...

C# 实现draw一个简单的温度计

运行结果 概述: 代码分析 该控件主要包含以下几个部分: 属性定义: MinValue:最低温度值。 MaxValue:最高温度值。 CurrentValue:当前温度值。 构造函数: 设置了一些控件样式来提升绘制效果…...

解放双手,让流程自动化软件助你一臂之力

本文将介绍流程自动化软件/脚本/助手的用途,同时我也做个自我介绍: 🏆 技术专长:专注于自动化脚本、网站、小程序、软件、爬虫及数据采集的定制化开发,为客户提供全方位的数字化解决方案。 💼 行业经验&…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 ​…...