当前位置: 首页 > news >正文

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 5G基站光纤连接问题(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员

✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解

💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导

👏 感谢大家的订阅➕ 和 喜欢💗

📎在线评测链接

https://app5938.acapp.acwing.com.cn/contest/2/problem/OD1072

🌍 评测功能需要 ⇒ 订阅专栏 ⇐ 后私信联系清隆解锁~

🍓OJ题目截图

在这里插入图片描述

文章目录

    • 📎在线评测链接
    • 🍓OJ题目截图
    • 🍿 5G基站光纤连接问题
      • 问题描述
      • 输入格式
      • 输出格式
      • 样例输入
        • 样例 1
        • 样例 2
        • 样例 3
      • 样例输出
        • 样例 1 输出
        • 样例 2 输出
        • 样例 3 输出
      • 样例解释
        • 样例 1 解释
        • 样例 2 解释
        • 样例 3 解释
      • 数据范围
      • 题解
      • 参考代码

🍿 5G基站光纤连接问题

问题描述

K小姐是一家通信公司的网络工程师,她最近被分配了一项任务:在某个城市建设5G网络。该城市已经选定了 n n n 个地点作为5G基站的位置,编号从 1 1 1 n n n。为了确保所有基站能够互联互通,K小姐需要在这些基站之间架设光纤进行连接。不同基站之间架设光纤的成本各不相同,而且有些基站之间已经存在光纤相连。K小姐的任务是设计一个算法,计算出能够联通所有基站的最小成本。需要注意的是,基站的联通具有传递性,即如果基站 A A A 与基站 B B B 架设了光纤,基站 B B B 与基站 C C C 也架设了光纤,那么基站 A A A 与基站 C C C 也视为可以互相联通。

输入格式

第一行输入一个正整数 n n n,表示基站的个数,其中 0 < n ≤ 20 0 < n \leq 20 0<n20

第二行输入一个正整数 m m m,表示具备光纤直连条件的基站对的数目,其中 0 < m < n ( n − 1 ) 2 0 < m < \frac{n(n-1)}{2} 0<m<2n(n1)

从第三行开始连续输入 m m m 行数据,每行的格式为 x y z p x\ y\ z\ p x y z p,其中 x x x y y y 表示基站的编号,满足 0 < x ≤ n 0 < x \leq n 0<xn 0 < y ≤ n 0 < y \leq n 0<yn x ≠ y x \neq y x=y; z z z 表示在 x x x y y y 之间架设光纤的成本,满足 0 < z < 100 0 < z < 100 0<z<100; p p p 表示是否已存在光纤连接,取值为 0 0 0 1 1 1,其中 0 0 0 表示未连接,而 1 1 1 表示已连接。

输出格式

如果给定条件可以建设成功互联互通的5G网络,则输出最小的建设成本;如果给定条件无法建设成功互联互通的5G网络,则输出 − 1 -1 1

样例输入

样例 1
3
3
1 2 3 0
1 3 1 0
2 3 5 0
样例 2
3
1
1 2 5 0
样例 3
3
3
1 2 3 0
1 3 1 0
2 3 5 1

样例输出

样例 1 输出
4
样例 2 输出
-1
样例 3 输出
1

样例解释

样例 1 解释

只需要在基站 1 1 1 和基站 2 2 2 之间,以及基站 2 2 2 和基站 3 3 3 之间铺设光纤,其成本为 3 + 1 = 4 3 + 1 = 4 3+1=4

样例 2 解释

基站 3 3 3 无法与其他基站连接,因此无法建设成功互联互通的5G网络,输出 − 1 -1 1

样例 3 解释

基站 2 2 2 和基站 3 3 3 已有光纤相连,只需要在基站 1 1 1 和基站 3 3 3 之间铺设光纤,其成本为 1 1 1

数据范围

  • 0 < n ≤ 20 0 < n \leq 20 0<n20
  • 0 < m < n ( n − 1 ) 2 0 < m < \frac{n(n-1)}{2} 0<m<2n(n1)
  • 0 < x , y ≤ n 0 < x, y \leq n 0<x,yn, x ≠ y x \neq y x=y
  • 0 < z < 100 0 < z < 100 0<z<100
  • p ∈ { 0 , 1 } p \in \{0, 1\} p{0,1}

题解

这是一个经典的最小生成树问题,可以使用 Kruskal 算法或 Prim 算法求解。这里我们采用 Kruskal 来解决,首先将所有已经存在光纤连接的基站对进行合并,然后按照架设光纤的成本从小到大排序,依次尝试连接未连通的基站对。如果连接后不会形成环路,则将该条边加入最小生成树中。当所有基站都被连通后,最小生成树的边权之和就是最小的建设成本。

如果最终无法将所有基站连通,则输出 − 1 -1 1

参考代码

  • Python
# 并查集
class UnionFind:def __init__(self, n):self.parent = list(range(n + 1))self.rank = [0] * (n + 1)def find(self, x):if self.parent[x] != x:self.parent[x] = self.find(self.parent[x])return self.parent[x]def union(self, x, y):px, py = self.find(x), self.find(y)if px == py:returnif self.rank[px] < self.rank[py]:self.parent[px] = pyelif self.rank[px] > self.rank[py]:self.parent[py] = pxelse:self.parent[py] = pxself.rank[px] += 1n = int(input())
m = int(input())
uf = UnionFind(n)
edges = []for _ in range(m):x, y, w, p = map(int, input().split())if p == 1:uf.union(x, y)else:edges.append((w, x, y))edges.sort()
cost = 0
for w, x, y in edges:if uf.find(x) != uf.find(y):uf.union(x, y)cost += wif len(set(uf.find(i) for i in range(1, n + 1))) == 1:print(cost)
else:print(-1)
  • Java
import java.util.*;class UnionFind {int[] parent;int[] rank;public UnionFind(int n) {parent = new int[n + 1];rank = new int[n + 1];for (int i = 0; i <= n; i++) {parent[i] = i;}}public int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}public void union(int x, int y) {int px = find(x);int py = find(y);if (px == py) {return;}if (rank[px] < rank[py]) {parent[px] = py;} else if (rank[px] > rank[py]) {parent[py] = px;} else {parent[py] = px;rank[px]++;}}
}public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int m = sc.nextInt();UnionFind uf = new UnionFind(n);List<int[]> edges = new ArrayList<>();for (int i = 0; i < m; i++) {int x = sc.nextInt();int y = sc.nextInt();int w = sc.nextInt();int p = sc.nextInt();if (p == 1) {uf.union(x, y);} else {edges.add(new int[]{w, x, y});}}edges.sort((a, b) -> a[0] - b[0]);int cost = 0;for (int[] edge : edges) {int w = edge[0];int x = edge[1];int y = edge[2];if (uf.find(x) != uf.find(y)) {uf.union(x, y);cost += w;}}Set<Integer> roots = new HashSet<>();for (int i = 1; i <= n; i++) {roots.add(uf.find(i));}if (roots.size() == 1) {System.out.println(cost);} else {System.out.println(-1);}}
}
  • Cpp
#include <iostream>
#include <vector>
#include <algorithm>using namespace std;class UnionFind {
private:vector<int> parent;vector<int> rank;public:UnionFind(int n) {parent.resize(n + 1);rank.resize(n + 1, 0);for (int i = 0; i <= n; i++) {parent[i] = i;}}int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}void merge(int x, int y) {int px = find(x);int py = find(y);if (px == py) {return;}if (rank[px] < rank[py]) {parent[px] = py;} else if (rank[px] > rank[py]) {parent[py] = px;} else {parent[py] = px;rank[px]++;}}
};int main() {int n, m;cin >> n >> m;UnionFind uf(n);vector<vector<int>> edges;for (int i = 0; i < m; i++) {int x, y, w, p;cin >> x >> y >> w >> p;if (p == 1) {uf.merge(x, y);} else {edges.push_back({w, x, y});}}sort(edges.begin(), edges.end());int cost = 0;for (auto edge : edges) {int w = edge[0];int x = edge[1];int y = edge[2];if (uf.find(x) != uf.find(y)) {uf.merge(x, y);cost += w;}}bool success = true;int root = uf.find(1);for (int i = 2; i <= n; i++) {if (uf.find(i) != root) {success = false;break;}}if (success) {cout << cost << endl;} else {cout << -1 << endl;}return 0;
}

相关文章:

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 5G基站光纤连接问题(200分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…...

分层Agent

分层Teams 分层Agent创建tool研究团队工具文档编写团队工具 通用能力定义Agent团队研究团队文档编写团队 添加图层 分层Agent 在前面的示例&#xff08;Agent管理&#xff09;中&#xff0c;我们引入了单个管理节点的概念&#xff0c;用于在不同工作节点之间路由工作。 但是&a…...

OS复习笔记ch11-1

外围设备的管理和磁盘调度 外围设备 从CPU的角度来看&#xff0c;外设有几个比较重要的I/O接口&#xff08;interfaces&#xff09; 状态reg&#xff1a;向CPU报告设备的状态&#xff08;忙碌/空闲&#xff09;命令reg&#xff1a;接收CPU命令&#xff0c;存储 CPU 需要执行的…...

Docker Compose 使用

一、简介 Docker Compose 是一个工具&#xff0c;用于定义和运行多容器 Docker 应用程序。它允许用户使用 YAML 文件来配置应用程序需要的所有服务&#xff0c;然后使用一个命令来从 YAML 文件配置中创建并启动所有服务。其主要目的是为了简化了多容器 Docker 应用程序的部署和…...

KEIL5.39 5.40 fromelf 不能生成HEX bug

使用AC6 编译,只要勾选了生成HEX。 结果报如下错误 暂时没有好的解决办法 1.替换法 2.在编译完后用命令生成HEX...

mongosh 和mongo 命令行连接MongoDB

Mongoshell MongoDB的Shell工具mongosh是一个全功能的JavaScript和Node.js的14.x REPL与MongoDB的部署交互环境。我们通过它可以直接对数据库进行查询和操作。这个工具是需要在安装玩MongoDB后单独安装的。 与传统的mongo方式连接MongoDB更加丰富。 官网 https://www.mongodb.…...

DOM 改变节点

DOM 改变节点 文档对象模型&#xff08;DOM&#xff09;是 HTML 和 XML 文档的编程接口。它提供了对文档的结构化表示&#xff0c;并定义了一种方式&#xff0c;允许程序和脚本动态地访问和更新文档的内容、结构和样式。在网页开发中&#xff0c;DOM 操作是核心技能之一&#…...

【面试题分享】重现 string.h 库常用的函数

文章目录 【面试题分享】重现 string.h 库常用的函数一、字符串复制1. strcpy&#xff08;复制字符串直到遇到 null 终止符&#xff09;2. strncpy&#xff08;复制固定长度的字符串&#xff09; 二、字符串连接1. strcat&#xff08;将一个字符串连接到另一个字符串的末尾&…...

6.21 移动语义与智能指针

//先构造&#xff0c;再拷贝构造//利用"hello"这个字符串创建了一个临时对象//并复制给了s3//这一步实际上new了两次String s3 "hello"; 背景需求&#xff1a; 这个隐式创建的字符串出了该行就直接销毁掉&#xff0c;效率比较低 可以让_pstr指向这个空间…...

Kimi还能对学术论文进行润色?我来教你!

学境思源&#xff0c;一键生成论文初稿&#xff1a; AcademicIdeas - 学境思源AI论文写作 一、引言 在学术界&#xff0c;论文的质量往往决定了研究的可信度和影响力。Kimi作为一款人工智能助手&#xff0c;可以为学术论文的润色提供有效的帮助。本文将详细介绍如何利用Kimi进…...

智汇云舟成为中煤集团中煤智能创新联盟成员单位

6月21日&#xff0c;第八届世界智能产业博览会平行会议暨中煤智能创新联盟交流会在天津水游城丽筠酒店顺利举行。智汇云舟受邀参与&#xff0c;并由中国中煤能源集团授予荣誉证书&#xff0c;正式成为中煤智能创新联盟成员单位。会议上&#xff0c;清华大学、中国矿业大学&…...

【文心智能体大赛】迎接属于你的休闲娱乐导师!

迎接属于你的休闲娱乐导师&#xff01; 前言创建智能体发布智能体最后结语 前言 文心智能体平台AgentBuilder 是百度推出的基于文心大模型的智能体&#xff08;Agent&#xff09;平台&#xff0c;支持广大开发者根据自身行业领域、应用场景&#xff0c;选取不同类型的开发方式&…...

AI:音乐创作的未来还是毁灭的序曲?

AI&#xff1a;音乐创作的未来还是毁灭的序曲&#xff1f; 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;它已经渗透到了我们生活的方方面面&#xff0c;包括音乐领域。然而&#xff0c;AI在音乐创作中的角色引发了广泛的讨论和争议。一些人认为AI为音乐…...

如何通过AI进行智能日志异常检测

智能日志异常检测是一种利用人工智能&#xff08;AI&#xff09;技术来自动识别日志数据中异常模式或行为的方法。传统日志监控依赖于预定义规则&#xff0c;而智能日志异常检测可以适应不同的日志模式和异常类型&#xff0c;提高检测准确性和效率。下面是一个完整的步骤指南&a…...

C++ GPU编程(英伟达CUDA)

安装编译环境 https://developer.download.nvidia.com/compute/cuda/12.5.0/local_installers/cuda_12.5.0_555.85_windows.exe CMakeLists.txt cmake_minimum_required(VERSION 3.10)set(CMAKE_CXX_STANDARD 17) set(CMAKE_BUILD_TYPE Release) #set(CMAKE_CUDA_ARCHITECTUR…...

肾虚学习实验第T1周:实现mnist手写数字识别

>- **&#x1f368; 本文为[&#x1f517;365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客** >- **&#x1f356; 原作者&#xff1a;[K同学啊](https://mtyjkh.blog.csdn.net/)** 目录 一、前言 作为一名研究牲&#xff0…...

Python | Leetcode Python题解之第162题寻找峰值

题目&#xff1a; 题解&#xff1a; class Solution:def findPeakElement(self, nums: List[int]) -> int:n len(nums)# 辅助函数&#xff0c;输入下标 i&#xff0c;返回 nums[i] 的值# 方便处理 nums[-1] 以及 nums[n] 的边界情况def get(i: int) -> int:if i -1 or…...

定个小目标之刷LeetCode热题(26)

这道题属于一道简单题&#xff0c;可以使用辅助栈法&#xff0c;代码如下所示 class Solution {public boolean isValid(String s) {if (s.isEmpty())return false;// 创建字符栈Stack<Character> stack new Stack<Character>();// 遍历字符串数组for (char c : …...

网络爬虫设置代理服务器

目录 1&#xff0e;获取代理 IP 2&#xff0e;设置代理 IP 3. 检测代理 IP 的有效性 4. 处理异常 如果希望在网络爬虫程序中使用代理服务器&#xff0c;就需要为网络爬虫程序设置代理服务器。 设置代理服务器一般分为获取代理 IP 、设置代理 IP 两步。接下来&#xff0c;分…...

3、matlab单目相机标定原理、流程及实验

1、单目相机标定流程及步骤 单目相机标定是通过确定相机的内部和外部参数&#xff0c;以便准确地在图像空间和物体空间之间建立映射关系。下面是单目相机标定的流程及步骤&#xff1a; 搜集标定图像&#xff1a;使用不同角度、距离和姿态拍摄一组标定图像&#xff0c;并确保标…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...