Python每日一练(20230311)

目录
1. 合并两个有序数组
2. 二叉树的右视图
3. 拼接最大数
🌟 每日一练刷题专栏
C/C++ 每日一练 专栏
Python 每日一练 专栏
1. 合并两个有序数组
给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组。
初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。你可以假设 nums1 的空间大小等于 m + n,这样它就有足够的空间保存来自 nums2 的元素。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6]
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1]
提示:
nums1.length == m + nnums2.length == n0 <= m, n <= 2001 <= m + n <= 200-10^9 <= nums1[i], nums2[i] <= 10^9
代码:
class Solution(object):def merge(self, nums1, m, nums2, n):""":type nums1: List[int]:type m: int:type nums2: List[int]:type n: int:rtype: void Do not return anything, modify nums1 in-place instead."""p1, p2 = m - 1, n - 1pos = m + n - 1while p1 >= 0 and p2 >= 0:if nums1[p1] >= nums2[p2]:nums1[pos] = nums1[p1]p1 -= 1else:nums1[pos] = nums2[p2]p2 -= 1pos -= 1while p2 >= 0:nums1[pos] = nums2[p2]p2 -= 1pos -= 1return nums1# %%
s = Solution()
print(s.merge(nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3))
输出:
[1, 2, 2, 3, 5, 6]
2. 二叉树的右视图
给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例 1:

输入: [1,2,3,null,5,null,4] 输出: [1,3,4]
示例 2:
输入: [1,null,3] 输出: [1,3]
示例 3:
输入: [] 输出: []
提示:
- 二叉树的节点个数的范围是
[0,100] -100 <= Node.val <= 100
代码:
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = Noneclass Solution:def rightSideView(self, root: TreeNode) -> list:if not root:return []res = []curnode = [root]nexnode = []res.append(curnode[0].val)while curnode:for s in curnode:if s.right:nexnode.append(s.right)if s.left:nexnode.append(s.left)if nexnode:res.append(nexnode[0].val)curnode = nexnodenexnode = []return resdef listToTree(lst: list) -> TreeNode:if not lst:return Noneroot = TreeNode(lst[0])queue = [root]i = 1while i < len(lst):node = queue.pop(0)if lst[i] is not None:node.left = TreeNode(lst[i])queue.append(node.left)i += 1if i < len(lst) and lst[i] is not None:node.right = TreeNode(lst[i])queue.append(node.right)i += 1return rootdef inorderTraversal(root: TreeNode) -> list:if not root:return []res = []res += inorderTraversal(root.left)res.append(root.val)res += inorderTraversal(root.right)return res# %%
s = Solution()
null = Nonenums = [1,2,3,null,5,null,4]
root = listToTree(nums)
print(s.rightSideView(root))
print(inorderTraversal(root)) #testnums = [1,null,3]
root = listToTree(nums)
print(s.rightSideView(root))
print(inorderTraversal(root)) #test
输出:
[1, 3, 4]
[2, 5, 1, 3, 4]
[1, 3]
[1, 3]
3. 拼接最大数
给定长度分别为 m 和 n 的两个数组,其元素由 0-9 构成,表示两个自然数各位上的数字。现在从这两个数组中选出 k (k <= m + n) 个数字拼接成一个新的数,要求从同一个数组中取出的数字保持其在原数组中的相对顺序。
求满足该条件的最大数。结果返回一个表示该最大数的长度为 k 的数组。
说明: 请尽可能地优化你算法的时间和空间复杂度。
示例 1:
输入: nums1 = [3, 4, 6, 5] nums2 = [9, 1, 2, 5, 8, 3] k = 5 输出:[9, 8, 6, 5, 3]
示例 2:
输入: nums1 = [6, 7] nums2 = [6, 0, 4] k = 5 输出:[6, 7, 6, 0, 4]
示例 3:
输入: nums1 = [3, 9] nums2 = [8, 9] k = 3 输出:[9, 8, 9]
代码:
class Solution:def maxNumber(self, nums1: list, nums2: list, k: int) -> list:def pick_max(nums, k):stack = []drop = len(nums) - kfor num in nums:while drop and stack and stack[-1] < num:stack.pop()drop -= 1stack.append(num)return stack[:k]def merge(A, B):lst = []while A or B:bigger = A if A > B else Blst.append(bigger[0])bigger.pop(0)return lstreturn max(merge(pick_max(nums1, i), pick_max(nums2, k - i))for i in range(k + 1)if i <= len(nums1) and k - i <= len(nums2))
# %%
s = Solution()
print(s.maxNumber(nums1 = [3,4,6,5], nums2 = [9,1,2,5,8,3], k = 5))
print(s.maxNumber(nums1 = [6,7], nums2 = [6,0,4], k = 5))
print(s.maxNumber(nums1 = [3,9], nums2 = [8,9], k = 3))
输出:
[9, 8, 6, 5, 3]
[6, 7, 6, 0, 4]
[9, 8, 9]
注:max(迭代推导式) --> max(i for i in [3,6,4,5] if i%2)
🌟 每日一练刷题专栏
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
★ 收藏,你的青睐是我努力的方向!
✏️ 评论,你的意见是我进步的财富!
| C/C++ 每日一练 专栏 |
| Python 每日一练 专栏 |
相关文章:
Python每日一练(20230311)
目录 1. 合并两个有序数组 2. 二叉树的右视图 3. 拼接最大数 🌟 每日一练刷题专栏 C/C 每日一练 专栏 Python 每日一练 专栏 1. 合并两个有序数组 给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为…...
202109-3 CCF 脉冲神经网络 66分题解 + 解题思路 + 解题过程
解题思路 根据题意,脉冲源的阈值大于随机数时,会向其所有出点发送脉冲 神经元当v>30时,会向其所有出点发送脉冲,unordered_map <int, vector > ne; //存储神经元/脉冲源的所有出点集合vector 所有脉冲会有一定的延迟&am…...
Aurora简介
Amazon Aurora是一种兼容MySQL和PostgreSQL的商用级别关系数据库,它既有商用数据库的性能和可用性(比如Oracle数据库),又具有开源数据库的成本效益(比如MySQL数据库)。 Aurora的速度可以达到MySQL数据库的…...
【python实操】用python写软件弹窗
文章目录前言组件label 与 多行文本复选框组件Radiobutton单选组件Frame框架组件labelframe标签框架列表框Listboxscrollbar滚动条组件scale刻度条组件spinbox组件Toplevel子窗体组件PanedWindow组件Menu下拉菜单弹出菜单总结针对组件前言 python学习之路任重而道远࿰…...
Ubuntu 常用操作
版本22.04 1、开启 root # 输入新密码 sudo passwd rootUbuntu以root账号登录桌面 默认情况是不允许用root帐号直接登录图形界面的。 Ubuntu 默认使用 GNOME,GNOME 使用 GDM 显示管理器。 为了允许以 root 身份登录到 GNOME,你需要对位于 /etc/…...
井字棋--课后程序(Python程序开发案例教程-黑马程序员编著-第7章-课后作业)
实例2:井字棋 井字棋是一种在3 * 3格子上进行的连珠游戏,又称井字游戏。井字棋的游戏有两名玩家,其中一个玩家画圈,另一个玩家画叉,轮流在3 * 3格子上画上自己的符号,最先在横向、纵向、或斜线方向连成一条…...
谷粒学院开发(三):统一日志、异常及前端准备工作
特定异常处理 ControllerAdvice public class GlobalExceptionHandler {ExceptionHandler(Exception.class) // 指定出现什么异常会被处理ResponseBody // 为了能够返回数据public R error(Exception e) {e.printStackTrace();return R.error().message("执行了全局异常…...
华为OD机试题 - 招聘(JavaScript)| 机考必刷
更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:招聘题目输入输出示例一输入输出说明示例二输入输出说明示例三输…...
关于SQL优化的几点说明
1. ORACLE DBA是如何进行SQL优化的 作为一个Oracle数据库管理员(DBA),SQL优化是他们的日常工作之一,主要目标是优化查询性能,减少查询时间,并提高数据库的整体性能。 以下是Oracle DBA如何进行SQL优化的一般流程: 监控…...
使用高精度秒表StopWatch测试DateTime.Now的精度
StopWatch使用的命名空间:using System.Diagnostics;StopWatch的使用方法:创建Stopwatch对象:stopwatch;stopwatch计时表开启:stopwatch.Start();stopwatch计时表关闭:stopwatch.Stop();计算stopwatch.Stop…...
【C++】vector的使用及其模拟实现
这里写目录标题一、vector的介绍及使用1. vector的介绍2. 构造函数3. 遍历方式4. 容量操作及空间增长问题5. 增删查改6. vector二维数组二、vector的模拟实现1. 构造函数2. 迭代器和基本接口3. reserve和resize4. push_back和pop_back5. insert和erase5. 迭代器失效问题5. 浅拷…...
[洛谷-P2585][ZJOI2006]三色二叉树(树形DP+状态机DP)
[洛谷-P2585][ZJOI2006]三色二叉树(树形DP状态机DP)一、题目题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示数据规模与约定二、分析1、递归建树2、树形DP 状态机DP(1)状态表示(2)状态转移三、…...
BI技巧丨计算组
PowerBI有三大工具,分别是DAX Studio,Tabular Editor和Bravo。 DAX Studio通常我们会用来进行性能分析和DAX调优使用,Bravo一般用来批量格式化DAX,而Tabular Editor主要的功能就是计算组。 计算组这个名词,相信很多小伙…...
PMP项目管理项目范围管理
目录1 项目范围管理概述2 规划范围管理3 收集需求4 定义范围5 创建 WBS6 确认范围7 控制范围1 项目范围管理概述 项目范围管理包括确保项目做且只做所需的全部工作,以成功完成项目的各 个过程。管理项目范围主要在于定义和控制哪些工作应在项目内,哪些工…...
Flink 定时加载数据源
一、简介 flink 自定义实时数据源使用流处理比较简单,比如 Kafka、MQ 等,如果使用 MySQL、redis 批处理也比较简单 如果需要定时加载数据作为 flink 数据源使用流处理,比如定时从 mysql 或者 redis 获取一批数据,传入 flink 做处…...
ChatGPT、人工智能、人类和一些酒桌闲聊
© 2023 Conmajia Initiated 10th March, 2023 昨天跟某化学家喝酒,期间提到了 ChatGPT。他的评价是:这鬼东西大量输出毫无意义、错漏百出甚至是虚假的信息,“in a confident accent”。例如某次 GPT 针对“描述某某记者”这一问题&#…...
WebRTC开源库内部调用abort函数引发程序发生闪退问题的排查
目录 1、初始问题描述 2、使用Process Explorer工具查看到处理音视频业务的rtcmpdll.dll模块没有加载起来 3、使用Dependency Walker工具查看到rtcmpdll.dll依赖的库有问题 4、更新库之后Debug程序启动时就发生异常,程序闪退 5、VS调试时看不到有效的函数调用堆…...
Golang并发编程
Golang并发编程 文章目录Golang并发编程1. 协程2. channel2.1 channel的创建2.2 使用waitGroup实现同步3. 并发编程3.1 并发编程之runtime包3.2 mutex互斥锁3.3 channel遍历3.3.1 for if遍历3.3.2 for range3.4 select switch3.5 Timer3.5.1 time.NewTimer()3.5.2 Stop、reset…...
windows+Anaconda环境下安装BERT成功安装方法及问题汇总
前言 在WindowsAnaconda环境下安装BERT,遇到各种问题,几经磨难,最终成功。接下来,先介绍成功的安装方法,再附上遇到的问题汇总 成功的安装方法 1、创建虚拟环境 注意:必须加上python3.7.12以创建环境&a…...
git - 简易指南
git - 简易指南 创建新仓库 创建新文件夹,打开,然后执行 git init 以创建新的 git 仓库。 检出仓库 执行如下命令以创建一个本地仓库的克隆版本: git clone /path/to/repository 如果是远端服务器上的仓库,你的命令会是这个样…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
