tessy 编译报错:单元测试时,普通桩函数内容相关异常场景
目录
1,失败现象
2,原因分析
1,失败现象
1,在 step 桩函数正常的情况下报错。
2,测试代码执行的数据流 和 step 桩函数内容不一致。
2,原因分析
桩函数分为 test object, test case, test step 三种类别。出现此失败现象的原因是三种类别的桩函数内容不一致,改为一致即可。
切换桩函数类别的方法为,在书写桩函数内容的右上角,有一个 往左 和 往右 的黄色箭头。点击此箭头即可切换桩函数类别。
test object 桩函数类只有一个,当 往左 的黄色箭头为 灰色时,即可找到。
test case 和 test step 桩函数类和创建的 test case, test step 用例一一对应。
相关文章:
tessy 编译报错:单元测试时,普通桩函数内容相关异常场景
目录 1,失败现象 2,原因分析 1,失败现象 1,在 step 桩函数正常的情况下报错。 2,测试代码执行的数据流 和 step 桩函数内容不一致。 2,原因分析 桩函数分为 test object, test case, test step 三种类别。…...
计算机专业是否仍是“万金油”
作为一名即将参加高考的学生,我站在人生的分岔路口上,面临着选择大学专业的重大抉择。在这个关键节点,计算机相关专业是否仍是炙手可热的选择? 首先,从行业的角度来看,计算机相关专业确实在近年来持续火…...
雷池社区版自动SSL
正常安装雷池,并配置站点,暂时不配置ssl 不使用雷池自带的证书申请。 安装(acme.sh),使用域名验证方式生成证书 先安装git yum install git 或者 apt-get install git 安装完成后使用 git clone https://gitee.com/n…...
怎样减少徐州服务器租用的成本?
服务器租用的出现,十分便于网络行业的发展,但是随着服务器租用的广泛应用,整体还是有着一定的成本的吗,不同的服务器类型在价格方面也是不同的,那么企业在选择服务器租用后,怎样才能减少服务器租用的成本呢…...
【性能优化】表分桶实践最佳案例
分桶背景 随着企业的数据不断增长,数据的分布和访问模式变得越来越复杂。我们前面介绍了如何通过对表进行分区来提高查询效率,但对于某些特定的查询模式,特别是需要频繁地进行数据联接查或取样的场景,仍然可能面临性能瓶颈。此外…...
数据仓库的挑战
建设数据仓库是一个复杂且资源密集的过程,需要考虑多个方面。以下是建设数据仓库时常见的挑战及其详细解释: 1. 数据集成 挑战: 数据来源多样:数据来自不同的系统、数据库、文件格式(如CSV、JSON、XML)、…...
基于ResNet-18的简单分类(新手,而且网络效果不咋滴,就是学个流程)
引言 先看问题: 我手边有一数据集,然后我想分分类!~~ 咳咳,最近刚做了一个:训练集有1143张,分为5类,里面图片是打乱的。测试集有248张,想把它分分类看看咋样。 再看一下效果: …...
自动化测试:Autorunner的使用
自动化测试:Autorunner的使用 一、实验目的 1、掌握自动化测试脚本的概念。 2、初步掌握Autorunner的使用 二、Autorunner的简单使用 autoRunner使用方法 新建项目 a) 在项目管理器空白区域,右键鼠标,选择新建项目 b) 输入项目名后,点击[确定]. 在初次打开aut…...
时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测; 2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据&…...
软考 系统架构设计师系列知识点之杂项集萃(42)
接前一篇文章:软考 系统架构设计师系列知识点之杂项集萃(41) 第67题 Windows操作系统在图形界面处理方面采用的核心架构风格是( )风格。Java语言宣传的“一次编写,到处运行”的特性,从架构风格…...
FastBoot刷机获取root权限(Magisk)
1.首先要下载ADB、Fastboot等工具。 1.ADB、Fastboot工具 https://developer.android.com/studio/releases/platform-tools 2.安装FastBoot的USB驱动 https://developer.android.com/studio/run/oem-usb 2.下载对应的镜像 https://developers.google.com/android/images?…...
信息检索(43):SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking 摘要1 引言2 相关工作3 方法3.1 SparTerm3.2 SPLADE:稀疏词汇和扩展模型 4 实验5 结论 发布时间(2021) 标题:稀疏词汇 扩展模型 摘要 稀疏的优点…...
DockerHub 镜像加速
Docker Hub 作为目前全球最大的容器镜像仓库,为开发者提供了丰富的资源。Docker Hub 是目前最大的容器镜像社区,DokcerHub的不能使用,导致在docker下pull镜像无法下载,安装kubernetes镜像也受到影响,下面请看解决方式。 1.加速原理 Docker下载加速的原理…...
Oracle 迁移 Mysql
-- Oracle->MySQL -- 使用时改一下where条件的owner和table_name -- 字段数据类型映射时会将Oracle中的浮点NUMBER转换为decimal(65,8)定点数 -- 可以识别主键约束、非空约束,但无法识别外键约束、唯一约束、自定义check -- 对于Oracle字符串长度为4000的&#x…...
vue3父子组件通信
一,父传子——defineProps 方法: 在父组件的模板中使用子组件标签,并且给标签自定义属性和属性名,即通过v-bind绑定数值,而后传给子组件;子组件则通过defineProps接收使用。 父组件: <tem…...
CSS中使用应用在伪元素中的计数器属性counter-increment
在CSS中,counter-increment 是一个用于递增计数器值的属性。它通常与 counter-reset 和 content 属性一起使用,以在文档中的特定位置(如列表项、标题等)插入自动生成的数字或符号。 counter-increment 基本用法: 使…...
【SkiaSharp绘图08】SKPaint方法:自动换行、是否乱码、字符偏移、边界、截距、文本轮廓、测量文本
文章目录 SKPaint方法BreakText 计算指定宽度内可绘制的字符个数ContainsGlyphs字体是否包含文本字符(是否会乱码)GetGlyphOffsets 字符偏移量GetGlyphPositions 偏移坐标GetGlyphWidths 每个字符的宽度与边界GetHorizontalTextIntercepts 轮廓截距GetPositionedTextIntercepts…...
深入理解Servlet Filter及其限流实践
引言 在Java Servlet技术中,Filter是一个拦截器,它允许开发者在请求到达目标资源之前或响应发送给客户端之后,对请求或响应进行拦截和处理。这种机制为实现诸如身份验证、日志记录、请求修改等功能提供了极大的灵活性。 Filter基础 Filter…...
使用cv2对视频指定区域进行去噪
视频去噪其实和图象一样,只是需要现将视频截成图片,在对图片进行去噪,将去噪的图片在合成视频就行。可以利用cv2.imread()、imwrite()等轻松实现。 去噪步骤 1、视频逐帧读成图片 2、图片指定区域批量去噪 2、去噪后的图片写入视频 1、视频逐…...
AI在创造还是毁掉音乐?
AI对音乐产业的影响是复杂而多维的,既有创造性的贡献也存在潜在的挑战。我们可以从以下几个角度来分析这个问题: ### 创造性贡献 1. **音乐创作**:AI可以帮助音乐家创作新的旋律和和声,甚至生成完整的音乐作品。例如,…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
