总结之LangChain(三)——模型IO缓存
一、聊天模型缓存
LangChain为聊天模型提供了一个可选的缓存层。这有两个好处:
如果您经常多次请求相同的完成结果,它可以通过减少您对LLM提供程序的API调用次数来帮您节省费用。
它可以通过减少您对LLM提供程序的API调用次数来加快您的应用程序速度。
from langchain_openai import ChatOpenAIllm = ChatOpenAI()
from langchain.globals import set_llm_cache
内存缓存
%%time 是一个魔术命令,用于在代码中测量代码块的执行时间。它是Python编程语言中的一个内置命令,可以用来计算代码块的执行时间。通过在代码块前加上"%%time",可以获取代码块的执行时间信息,包括总时间、CPU时间和内存使用情况等。
注意:%%time是Jupyter Notebook和IPython环境的特性,标准Python脚本(.py)或其他非交互式Python环境中无法直接使用。如果你在非Jupyter环境下需要类似功能,可以使用time模块来手动计时。
%%time
from langchain.cache import InMemoryCacheset_llm_cache(InMemoryCache())# 第一次,它尚未在缓存中,所以需要更长的时间
llm.predict("明天天气怎么样")
%%time
# 第二次,由于已存在于缓存中,因此速度更快
llm.predict("明天天气怎么样")
完整示例代码
from langchain_openai import ChatOpenAI
from langchain.cache import InMemoryCache
from langchain.globals import set_llm_cache
import time
llm = ChatOpenAI(api_key="sk-XXXXX")set_llm_cache(InMemoryCache())start_time = time.time()print(llm.predict("明天天气怎么样?"))
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间: {execution_time} 秒")start_time = time.time()
print(llm.predict("明天天气怎么样?"))
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间: {execution_time} 秒")
结果
抱歉,我无法提供明确的明天天气预报,因为我无法访问实时天气数据。建议你查看天气预报应用或网站,以获取最新的天气信息。
代码执行时间: 5.457608938217163 秒
抱歉,我无法提供明确的明天天气预报,因为我无法访问实时天气数据。建议你查看天气预报应用或网站,以获取最新的天气信息。
代码执行时间: 0.0010001659393310547 秒
当然,可以结合我们的Chain来使用,如下:
from langchain_openai import ChatOpenAI
from langchain.cache import InMemoryCache
from langchain.globals import set_llm_cache
import time
llm = ChatOpenAI(api_key="sk-XXX")from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([("system", "你是一个专业的天气播报员"),("user", "{input}")
])chain = prompt | llm
set_llm_cache(InMemoryCache())
start_time = time.time()print(chain.invoke("明天天气怎么样?"))
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间: {execution_time} 秒")start_time = time.time()
print(chain.invoke("明天天气怎么样?"))
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间: {execution_time} 秒")
结果
content='明天的天气预报如下:\n- 地点:[请提供具体地点]\n- 天气:[晴/多云/阴/雨/雪/雾等]\n- 温度范围:[最高温度]℃ 到 [最低温度]℃\n- 风力风向:[风力等级],[风向]\n\n请提供具体地点,我可以帮您查询更详细的天气情况。' response_metadata={'token_usage': {'completion_tokens': 131, 'prompt_tokens': 33, 'total_tokens': 164}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': 'fp_811936bd4f', 'finish_reason': 'stop', 'logprobs': None} id='run-c07a049c-727d-47bc-a6c4-89135ff279c6-0' usage_metadata={'input_tokens': 33, 'output_tokens': 131, 'total_tokens': 164}
代码执行时间: 3.432565689086914 秒
content='明天的天气预报如下:\n- 地点:[请提供具体地点]\n- 天气:[晴/多云/阴/雨/雪/雾等]\n- 温度范围:[最高温度]℃ 到 [最低温度]℃\n- 风力风向:[风力等级],[风向]\n\n请提供具体地点,我可以帮您查询更详细的天气情况。' response_metadata={'token_usage': {'completion_tokens': 131, 'prompt_tokens': 33, 'total_tokens': 164}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': 'fp_811936bd4f', 'finish_reason': 'stop', 'logprobs': None} id='run-c07a049c-727d-47bc-a6c4-89135ff279c6-0' usage_metadata={'input_tokens': 33, 'output_tokens': 131, 'total_tokens': 164}
代码执行时间: 0.0029997825622558594 秒```
程序或者脚本运行周期结束,缓存失效。
SQLite缓存
from langchain_openai import ChatOpenAI
from langchain.cache import SQLiteCache
from langchain.globals import set_llm_cache
import time
llm = ChatOpenAI(api_key="sk-XXX")from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([("system", "你是一个专业的天气播报员"),("user", "{input}")
])chain = prompt | llm
set_llm_cache(SQLiteCache(database_path=".langchain.db"))
start_time = time.time()print(chain.invoke("明天天气怎么样?"))
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间: {execution_time} 秒")start_time = time.time()
print(chain.invoke("明天天气怎么样?"))
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间: {execution_time} 秒")
结果
content='明天的天气预报如下:预计会有阵雨,气温介于20-25摄氏度之间,风力较强,东北风,风速大约在20-25公里/小时。请注意携带雨具并做好防风保暖措施。' response_metadata={'token_usage': {'completion_tokens': 90, 'prompt_tokens': 33, 'total_tokens': 123}, 'model_name': 'gpt-35-turbo-16k', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-55940874-2056-44e8-90e2-c0163b218ced-0' usage_metadata={'input_tokens': 33, 'output_tokens': 90, 'total_tokens': 123}
代码执行时间: 2.634726047515869 秒
content='明天的天气预报如下:预计会有阵雨,气温介于20-25摄氏度之间,风力较强,东北风,风速大约在20-25公里/小时。请注意携带雨具并做好防风保暖措施。' response_metadata={'token_usage': {'completion_tokens': 90, 'prompt_tokens': 33, 'total_tokens': 123}, 'model_name': 'gpt-35-turbo-16k', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-55940874-2056-44e8-90e2-c0163b218ced-0' usage_metadata={'input_tokens': 33, 'output_tokens': 90, 'total_tokens': 123}
代码执行时间: 0.23708701133728027 秒
相关文章:
总结之LangChain(三)——模型IO缓存
一、聊天模型缓存 LangChain为聊天模型提供了一个可选的缓存层。这有两个好处: 如果您经常多次请求相同的完成结果,它可以通过减少您对LLM提供程序的API调用次数来帮您节省费用。 它可以通过减少您对LLM提供程序的API调用次数来加快您的应用程序速度。…...
判断一个Java服务是不是GateWay
方法 直接在对应服务的url后变加上后缀/actuator/gateway/routes,看是否会返回Gateway的路由信息。 如果返回了GateWay的路由列表,则该服务为Gateway服务。...
三次插值曲线--插值技术
三次插值曲线 1.1.三次样条曲线 三次样条曲线的基本思想是,在给定的一系列点(称为控制点或数据点)之间,通过一系列三次多项式曲线段来拟合这些点,使得整个曲线既平滑又准确地通过所有控制点。 1.1.1.数学定义 给定…...
python循环结构
1.while 循环 语句: while 循环条件表达式: 代码块 else: 代码块 小练: 设计一百以内的偶数相加 n 0 while n < 100:n 1if n % 2 0 :print(n) 判断是不是闰年(四年一润和百年不润,或者四百年一润&am…...
深入理解Netty的Pipeline机制:原理与实践详解
深入理解Netty的Pipeline机制:原理与实践详解 Netty是一个基于Java的高性能异步事件驱动的网络应用框架,广泛应用于高并发网络编程。(学习netty请参考:深入浅出Netty:高性能网络应用框架的原理与实践)Nett…...
直方图均衡化示例
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》 图3-17...
私域电商新纪元:消费增值模式的创新与成功实践
大家好,我是吴军,很高兴能够与您分享私域电商领域的魅力与机遇。今天,我将为大家呈现一个令人瞩目的成功案例,这个案例充分展现了私域电商的巨大潜力和无限可能。 在短短一个月的时间里,我们的客户成功实现了业绩的飞跃…...
Java——IO流(一)-(6/8):字节流-FileInputStream 每次读取多个字节(示例演示)、一次读取完全部字节(方式一、方式二,注意事项)
目录 文件字节输入流:每次读取多个字节 实例演示 注意事项 文件字节输入流:一次读取完全部字节 方式一 方式二 注意事项 文件字节输入流:每次读取多个字节 用到之前介绍过的常用方法: 实例演示 需求:用每次读取…...
服务器SSH 免密码登录
1. 背景 为了服务器的安全着想,设置的服务器密钥非常长。但是这导致每次连接服务器都需要输入一长串的密码,把人折腾的很痛苦,所以我就在想,能不能在终端SSH的时候无需输入密码。 windows 可以使用 xshell 软件,会自…...
Linux安装MySQL以及远程连接
1、Linux安装MySQL 1.1、准备解压包 MySQL5.x解压包 提取码:9y7n 1.2、通过rpm脚本安装 切记安装顺序:common --> libs --> client --> server 因为它们之间存在依赖关系,所以务必按照顺序安装 安装前请确保当前目录/文…...
SQL Server 数据库分页技术详解:选择最佳方法优化查询性能”。
当今数据驱动的应用程序中,数据库分页技术在优化查询性能和提升用户体验中扮演着重要角色。在 SQL Server 环境下,开发者面对大数据集时,常常需要选择合适的分页方法以平衡功能需求和性能优化。本文将详细介绍 SQL Server 中几种主要的分页技…...
electron录制-镜头缩放、移动
要求 1、当录屏过程中,鼠标点击,镜头应该往点击处拉近,等一段时间还原 2、录屏过程中,可能会发生多次点击,但是点击位置偏差大,可能会导致缩放之后,画面没出来,因此需要移动镜头帧 …...
红队内网攻防渗透:内网渗透之内网对抗:信息收集篇自动项目本机导出外部打点域内通讯PillagerBloodHound
红队内网攻防渗透 1. 内网自动化信息收集1.1 本机凭据收集类1.1.1、HackBrowserData 快速获取浏览器的账户密码1.1.2、Searchall 快速搜索服务器中的有关敏感信息还有浏览器的账户密码1.1.3、Pillager 适用于后渗透期间的信息收集工具,可以收集目标机器上敏感信息1.2 对外打点…...
2024最新IDEA插件开发+发布全流程 SelectCamelWords[选中驼峰单词](idea源代码)
2024最新IDEA插件开发(发布)-SelectCamelWords[选中驼峰单词](idea源代码) 参考文档 Jetbrains Idea插件开发文档: https://plugins.jetbrains.com/docs/intellij/welcome.html代码地址:https://github.com/yangfeng…...
【网络安全】网络安全基础精讲 - 网络安全入门第一篇
目录 一、网络安全基础 1.1网络安全定义 1.2网络系统安全 1.3网络信息安全 1.4网络安全的威胁 1.5网络安全的特征 二、入侵方式 2.1黑客 2.1.1黑客入侵方式 2.1.2系统的威胁 2.2 IP欺骗 2.2.1 TCP等IP欺骗 2.2.2 IP欺骗可行的原因 2.3 Sniffer探测 2.4端口扫描技术…...
初识 GPT-4 和 ChatGPT
文章目录 LLM 概述理解 Transformer 架构及其在 LLM 中的作用解密 GPT 模型的标记化和预测步骤 想象这样⼀个世界:在这个世界里,你可以像和朋友聊天⼀样快速地与计算机交互。那会是怎样的体验?你可以创造出什么样的应用程序?这正是…...
【C语言】解决C语言报错:Array Index Out of Bounds
文章目录 简介什么是Array Index Out of BoundsArray Index Out of Bounds的常见原因如何检测和调试Array Index Out of Bounds解决Array Index Out of Bounds的最佳实践详细实例解析示例1:访问负索引示例2:访问超出上限的索引示例3:循环边界…...
【C++】一个极简但完整的C++程序
一、一个极简但完整的C程序 我们编写程序是为了解决问题和任务的。 1、任务: 某个书店将每本售出的图书的书名和出版社,输入到一个文件中,这些信息以书售出的时间顺序输入,每两周店主会手工计算每本书的销售量、以及每个出版社的…...
Lua迭代器详解(附加红点功能实例)
Lua迭代器详解与用法 1. 什么是迭代器2. 为什么需要理解迭代器的原理3. 迭代器的实现0. 闭包1. 有状态迭代器2. 无状态迭代器 4. 红点树系统基础 1. 什么是迭代器 迭代器是一种能让我们遍历一个集合中的所有元素的代码结构。比如常用ipairs()和pairs()。 2. 为什么需要理解迭代…...
锂磷硫(LPS)属于硫化物固态电解质 Li7P3S11是代表性产品
锂磷硫(LPS)属于硫化物固态电解质 Li7P3S11是代表性产品 锂磷硫(LPS),为非晶态材料,是硫化物固态电解质代表性产品之一,具有热稳定性好、成本较低等优点,在固态电解质中离子电导率较…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
