JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码
JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码
医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核,并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS、DIP、平衡计分卡、KPI、360度考核等。医院绩效管理系统的开发将与时俱进的把国家最新医改政策精神融入到软件平台中来。医院绩效管理系统可以帮助医院和科室改善经营效益、提升医疗技术水平、提高患者满意度、提高员工工作积极性和主动性等。

功能介绍
医院绩效管理系统的功能特点:
一、科室和岗位管理
建立各核算单元,并对各核算单元的属性进行定义。一般来说,医院科室可以分为临床科室、医技科室、医辅科室、行政科室、后勤科室。根据各科室工作特点,可自定义各科室的岗位、岗位系数。

二、经济核算
对各核算单元的医疗收入、工作量收入进行数据统计、汇总、分析。医疗收入包括检查费、检验费、放射费、床位费、护理费、治疗费、手术费、注射费、吸氧费等。
对各核算单元的各项支出进行数据统计、汇总、分析。科室支出包括材料费、人员支出、维修费、水电费等。
对各核算单元的收支结余进行数据统计、汇总、分析。

三、工作量统计
按照RBRVS的工作原理,对各诊疗项目进行工作量分值进行定义、数据统计、汇总、分析。
RBRVS其实质是基于每个诊疗项目的资源投入,以相对价值为标准对医师绩效工资进行支付的一种方式。该方法的指导思想基于劳动付出、医疗风险以及投入成本进行核算,充分考虑到诊疗项目之间的差异,同一诊疗项目在不同科室之间的差异,以多劳多得与优劳优酬为主要原则,绩效工资核算受医疗价格的影响较小,切实体现绩效分配的公平性与公正性。基于RBRVS的绩效考核管理模式是以工作量进行核算,结合质量考核结果,将考核结果与工作量、工作质量及成本控制紧密挂钩的一种绩效分配考核模式。该考核模式是基于核算工作量、考核工作质量,再形成绩效分配的高效模式。
四、DRG/DIP统计
根据DRG/DIP的分组标准,对出院病例的DRG/DIP权重积分和控费考核结果进行数据统计、汇总、分析。
DRGs (Diagnosis Related Groups) 疾病诊断相关分组是一种根据患者年龄、疾病诊断、合并症、并发症、治疗方式、病症严重程度及转归等因素,将患者分入若干诊断组(DRG组)进行管理的体系。
DIP是基于大数据的病种组合(DIP)是利用大数据优势所建立的完整管理体系。基于DIP的分值付费通过组别定位及付费标准建立了统一的标准体系及资源配置模式,以增进管理的透明度与公平性,使政府、医保、医院各方在统一标准框架下建立沟通渠道,以有效合作取代互相博弈。
五、考核模型设计
根据科室职责设置考核指标、权重、考核标准、计算方法、扣分方法等。
六、数据接口设计
医院绩效管理系统将与HIS系统、EMR、PACS、LIS等业务和管理系统进行无缝链接,直接获取绩效考核和核算所需要的各项数据。
七、绩效考核
按照各科室的考核模型,软件平台根据获取的各项数据可以考核得分的计算。

八、绩效工资核算
软件平台可实现科室绩效工资一次分配核算和二次分配核算。
相关文章:
JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码
JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码 医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核,并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS…...
Python神经影像数据的处理和分析库之nipy使用详解
概要 神经影像学(Neuroimaging)是神经科学中一个重要的分支,主要研究通过影像技术获取和分析大脑结构和功能的信息。nipy(Neuroimaging in Python)是一个强大的 Python 库,专门用于神经影像数据的处理和分析。nipy 提供了一系列工具和方法,帮助研究人员高效地处理神经影…...
非关系型数据库NoSQL数据层解决方案 之 Mongodb 简介 下载安装 springboot整合与读写操作
MongoDB 简介 MongoDB是一个开源的面向文档的NoSQL数据库,它采用了分布式文件存储的数据结构,是当前非常流行的数据库之一。 以下是MongoDB的主要特点和优势: 面向文档的存储: MongoDB是一个面向文档的数据库管理系统࿰…...
使用Redis优化Java应用的性能
使用Redis优化Java应用的性能 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何使用Redis优化Java应用的性能。Redis是一种开源的内存数据结构…...
基于Python的数据可视化大屏的设计与实现
基于Python的数据可视化大屏的设计与实现 Design and Implementation of Python-based Data Visualization Dashboard 完整下载链接:基于Python的数据可视化大屏的设计与实现 文章目录 基于Python的数据可视化大屏的设计与实现摘要第一章 导论1.1 研究背景1.2 研究目的1.3 研…...
什么是N卡和A卡?有什么区别?
名人说:莫听穿林打叶声,何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 本篇笔记整理:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、什么是N卡和A卡?有什么区别?…...
四边形不等式优化
四边形不等式优化 应用于类似以下dp转移方程。 f i min 1 ≤ j ≤ i ( w i , j , f i ) f_{i}\min_{1\le j\le i}(w_{i,j},f_{i}) fi1≤j≤imin(wi,j,fi) 假设 w i , j w_{i,j} wi,j 可以在 O ( 1 ) O(1) O(1) 的时间内进行计算。 在正常情况下,…...
这家民营银行起诉担保公司?暴露担保增信兜底隐患
来源 | 镭射财经(leishecaijing) 助贷领域中,各路资方依赖担保增信业务扩张数年,其风险积压也不容忽视。一旦助贷平台或担保公司兜不住底,资方就将陷入被动。 最近,一则民营银行起诉合作担保公司的消息引…...
vscode禅模式怎么退出
1、如何进入禅模式:查看--外观--禅模式 2、退出禅模式 按二次ESC,就可以退出。...
Java23种设计模式(四)
1、备忘录模式 备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象,备忘录模式属于行为型模式。 备忘录模式允许在不破坏封装性的前提下,捕获和恢复对象的内部状态。 实现方式 创建备忘录…...
HTML静态网页成品作业(HTML+CSS)——故宫介绍网页(4个页面)
🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,未使用Javacsript代码,共有4个页面。 二、作品演示 三、代…...
Zookeeper:客户端命令行操作
文章目录 一、help二、ls path三、create四、get path五、set六、stat七、delete八、deleteall 一、help 显示所有操作命令。 二、ls path 使用ls命令来查看当前znode的子节点[可监听] w:监听子节点变化。s:附加次级信息。 三、create 普通创建&am…...
区块链技术介绍和用法
区块链技术是一种分布式账本技术,可以记录和存储一系列交易信息,并通过密码学算法保证信息的安全性和不可篡改性。区块链技术的核心概念是“区块”和“链”。 每个区块包含了一部分交易信息,以及一个指向上一个区块的哈希值。当新的交易发生…...
Upload-Labs-Linux1 使用 一句话木马
解题步骤: 1.新建一个php文件,编写内容: <?php eval($_REQUEST[123]) ?> 2.将编写好的php文件上传,但是发现被阻止,网站只能上传图片文件。 3.解决方法: 将php文件改为图片文件(例…...
从 Hadoop 迁移,无需淘汰和替换
我们仍然惊讶于有如此多的客户来找我们,希望从HDFS迁移到现代对象存储,如MinIO。我们现在以为每个人都已经完成了过渡,但每周,我们都会与一个决定进行过渡的主要、高技术性组织交谈。 很多时候,在这些讨论中ÿ…...
深度学习:从理论到应用的全面解析
引言 深度学习作为人工智能(AI)的核心技术之一,在过去的十年中取得了显著的进展,并在许多领域中展示了其强大的应用潜力。本文将从理论基础出发,探讨深度学习的最新进展及其在各领域的应用,旨在为读者提供全…...
【02】区块链技术应用
区块链在金融、能源、医疗、贸易、支付结算、证券等众多领域有着广泛的应用,但是金融依旧是区块链最大且最为重要的应用领域。 1. 区块链技术在金融领域的应用 1.2 概况 自2019年以来,国家互联网信息办公室已发布八批境内区块链信息服务案例清单&#…...
一篇文章搞懂残差网络算法
残差网络(Residual Network,简称ResNet)是一种深度学习架构,它在2015年由微软研究院的Kaiming He等四位作者提出。ResNet的提出是为了解决深度神经网络训练中的梯度消失和梯度爆炸问题,以及随着网络层数增加而出现的性能退化问题。本文将详细介绍残差网络算法的定义、产生…...
网络安全:Web 安全 面试题.(SQL注入)
网络安全:Web 安全 面试题.(SQL注入) 网络安全面试是指在招聘过程中,面试官会针对应聘者的网络安全相关知识和技能进行评估和考察。这种面试通常包括以下几个方面: (1)基础知识:包括网络基础知识、操作系…...
XSS学习(绕过)
学习平台:xss.tesla-space.com XSS学习(绕过) level1level2level3level4level5level6level7level8level9level10level11level12level13level14 level1 应该没有过滤 https://xss.tesla-space.com/level1.php?name<script>alert(1);&…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
