当前位置: 首页 > news >正文

模拟退火算法

模拟退火算法(Simulated Annealing, SA)是一种用于全局优化问题的概率搜索算法,其灵感来自于金属退火过程。在金属退火中,材料被加热到高温,然后缓慢冷却,以减少其晶格中的缺陷并达到最小能量状态。模拟退火算法通过模拟这一过程来寻找全局最优解,避免陷入局部最优解。

算法原理

模拟退火算法的基本思想是通过引入随机扰动和逐步降低温度,逐渐收敛到全局最优解。算法的主要步骤如下:

1. **初始化**:
   - 设定初始温度 \( T_0 \)。
   - 选择一个初始解 \( x_0 \)。

2. **迭代过程**:
   - 在当前温度 \( T \) 下,生成一个新的解 \( x_{\text{new}} \)。
   - 计算新解和当前解的目标函数值之差 \( \Delta E = E(x_{\text{new}}) - E(x) \)。
   - 如果 \( \Delta E < 0 \),接受新解(即新解优于当前解)。
   - 如果 \( \Delta E \geq 0 \),以概率 \( P = \exp(-\Delta E / T) \) 接受新解(即有一定概率接受劣解,避免陷入局部最优)。

3. **温度更新**:
   - 根据冷却计划逐步降低温度 \( T \)。
   - 常用的冷却计划包括线性降温、指数降温和对数降温。

4. **终止条件**:
   - 当温度降至一定值或达到最大迭代次数时,停止算法。

数学表示

模拟退火算法的数学表示如下:

1. **初始温度**: \( T_0 \)
2. **初始解**: \( x_0 \)
3. **目标函数**: \( E(x) \)
4. **新解生成**: \( x_{\text{new}} = \text{neighbor}(x) \)
5. **接受概率**:
   \[
   P(\Delta E) = \begin{cases} 
   1 & \text{if } \Delta E < 0 \\
   \exp(-\Delta E / T) & \text{if } \Delta E \geq 0 
   \end{cases}
   \]
6. **温度更新**: \( T_{k+1} = \alpha T_k \)

 算法步骤

以下是模拟退火算法的具体步骤:

1. **初始化**:
   ```python
   import random
   import math

   def initial_solution():
       # 定义初始解生成方法
       pass

   def objective_function(x):
       # 定义目标函数
       pass

   T = T0  # 初始温度
   x = initial_solution()  # 初始解
   ```

2. **迭代过程**:
   ```python
   while T > Tmin and iter < max_iter:
       x_new = generate_neighbor(x)  # 生成新解
       delta_E = objective_function(x_new) - objective_function(x)  # 计算目标函数值之差

       if delta_E < 0 or random.random() < math.exp(-delta_E / T):
           x = x_new  # 接受新解

       T = alpha * T  # 更新温度
       iter += 1
   ```

3. **结果输出**:
   ```python
   print("Optimal solution:", x)
   print("Optimal value:", objective_function(x))
   ```

示例应用

以下是一个TSP(旅行商问题)示例,展示如何使用模拟退火算法求解:

1. **定义问题**:
   - 给定一组城市及其之间的距离,寻找访问每个城市一次并返回起始城市的最短路径。

2. **实现模拟退火算法**:
   ```python
   import random
   import math

   def distance(cities, tour):
       # 计算旅行商路径的总距离
       dist = 0
       for i in range(len(tour)):
           dist += cities[tour[i-1]][tour[i]]
       return dist

   def initial_solution(n):
       # 生成初始解:一个随机的城市序列
       tour = list(range(n))
       random.shuffle(tour)
       return tour

   def generate_neighbor(tour):
       # 生成新解:随机交换两个城市的位置
       new_tour = tour[:]
       i, j = random.sample(range(len(tour)), 2)
       new_tour[i], new_tour[j] = new_tour[j], new_tour[i]
       return new_tour

   # 初始化参数
   T0 = 100
   Tmin = 1e-6
   alpha = 0.99
   max_iter = 1000
   cities = [...]  # 定义城市距离矩阵
   n = len(cities)

   T = T0
   iter = 0
   tour = initial_solution(n)

   while T > Tmin and iter < max_iter:
       new_tour = generate_neighbor(tour)
       delta_E = distance(cities, new_tour) - distance(cities, tour)

       if delta_E < 0 or random.random() < math.exp(-delta_E / T):
           tour = new_tour

       T *= alpha
       iter += 1

   print("Optimal tour:", tour)
   print("Optimal distance:", distance(cities, tour))
   ```

优点与缺点

**优点**:
- **全局优化**:可以跳出局部最优,找到全局最优解。
- **简单灵活**:易于实现,适用于各种优化问题。

**缺点**:
- **参数调节**:性能依赖于初始温度、冷却计划等参数的选择。
- **收敛速度**:可能收敛较慢,尤其是在高维空间中。

参考文献

- **Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983)**. Optimization by Simulated Annealing. Science, 220(4598), 671-680.
- **Aarts, E., Korst, J., and Michiels, W. (2005)**. Simulated Annealing. In Search Methodologies (pp. 187-210). Springer, Boston, MA.
- **Eglese, R. W. (1990)**. Simulated Annealing: A Tool for Operational Research. European Journal of Operational Research, 46(3), 271-281.

通过对模拟退火算法的详细介绍及其在TSP中的应用,可以看出该算法在解决全局优化问题中的重要性。理解其原理和实现方法,有助于在各种实际问题中灵活应用。

相关文章:

模拟退火算法

模拟退火算法&#xff08;Simulated Annealing, SA&#xff09;是一种用于全局优化问题的概率搜索算法&#xff0c;其灵感来自于金属退火过程。在金属退火中&#xff0c;材料被加热到高温&#xff0c;然后缓慢冷却&#xff0c;以减少其晶格中的缺陷并达到最小能量状态。模拟退火…...

Java匿名类

Java 匿名类是一种特殊的内部类&#xff0c;它没有名字&#xff0c;并且通常用来简化代码实现&#xff0c;尤其是在实现接口或者抽象类的实例时。匿名类可以在实例化时定义其行为&#xff0c;而不需要创建单独的类文件。 匿名类的特点 没有名字&#xff1a;匿名类是没有名字的…...

G7易流赋能化工物流,实现安全、环保与效率的共赢

近日&#xff0c;中国物流与采购联合会在古都西安举办了备受瞩目的第七届化工物流安全环保发展论坛。以"坚守安全底线&#xff0c;追求绿色发展&#xff0c;智能规划化工物流未来"为主题&#xff0c;该论坛吸引了众多政府部门、行业专家和企业代表的参与。G7易流作为…...

y=sin(2x)

函数 \( y \sin(2x) \) 是一个正弦函数&#xff0c;其中 \( x \) 是自变量&#xff0c;\( y \) 是因变量。这个函数描述了一个周期性波动的波形&#xff0c;其特点是&#xff1a; 1. **振幅**&#xff1a;正弦函数的振幅是 1&#xff0c;这意味着波形在 \( y \) 轴上的最大值…...

快捷方式(lnk)--加载HTA-CS上线

免责声明:本文仅做技术交流与学习... 目录 CS: HTA文档 文件托管 借助mshta.exe突破 本地生成lnk快捷方式: 非系统图标路径不同问题: 关于lnk的上线问题: CS: HTA文档 配置监听器 有效载荷---->HTA文档--->选择监听器--->选择powershell模式----> 默认生成一…...

从同—视角理解扩散模型(Understanding Diffusion Models A Unified Perspective)

从同—视角理解扩散模型 Understanding Diffusion Models A Unified Perspective【全公式推导】【免费视频讲解】 B站视频讲解 视频的论文笔记 从同一视角理解扩散模型【视频讲解笔记】 配合视频讲解的同步笔记。 整个系列完整的论文笔记内容如下&#xff0c;仅为了不用—一回复…...

docker 基本用法及跨平台使用

一、Docker的优点 docker 主要解决的问题就是程序开发过程中编译和部署中遇到的环境配置的问题。 1.1 Docker与其他虚拟机层次结构的区别** 运行程序重点关注点在于环境。 VM虚拟机是基于Hypervisor虚拟化服务运行的。 Docker是基于内核的虚拟化技术实现的。 1.2 Docker的技…...

Vscode远程ubuntu

远程连接 到这里vscode远程到ubuntu和关闭远程连接&#xff0c;已完成 配置python环境 在远程目录下新建.vscode隐藏文件夹&#xff0c;文件夹里新建一个 settings.json 文件&#xff0c; 先远程服务器看下conda下的python虚拟环境位置 settings.json位置及内容如下 测试pyt…...

SHA256 安全散列算法加速器实验

1、SHA256 介绍 SHA256 加速器是用来计算 SHA-256 的计算单元&#xff0c; SHA256 是 SHA-2 下细分出的一种算法。 SHA-2 名称来自于安全散列算法 2 &#xff08;英语&#xff1a; Secure Hash Algorithm 2 &#xff09;的缩写&#xff0c;一种密码散列函 数算法标准…...

Elasticsearch-ES查询单字段去重

ES 语句 整体数据 GET wkl_test/_search {"query": {"match_all": {}} }结果&#xff1a; {"took" : 123,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0…...

【Apache Doris】周FAQ集锦:第 7 期

【Apache Doris】周FAQ集锦&#xff1a;第 7 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和…...

EE trade:炒伦敦金的注意事项及交易指南

在贵金属市场中&#xff0c;伦敦金因其高流动性和全球认可度&#xff0c;成为广大投资者的首选。然而&#xff0c;在炒伦敦金的过程中&#xff0c;投资者需要注意一些关键点。南华金业小编带您一起来看看。 国际黄金报价 一般国际黄金报价会提供三个价格&#xff1a; 买价(B…...

JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码

JAVA医院绩效考核系统源码 功能特点&#xff1a;大型医院绩效考核系统源码 医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核&#xff0c;并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS…...

Python神经影像数据的处理和分析库之nipy使用详解

概要 神经影像学(Neuroimaging)是神经科学中一个重要的分支,主要研究通过影像技术获取和分析大脑结构和功能的信息。nipy(Neuroimaging in Python)是一个强大的 Python 库,专门用于神经影像数据的处理和分析。nipy 提供了一系列工具和方法,帮助研究人员高效地处理神经影…...

非关系型数据库NoSQL数据层解决方案 之 Mongodb 简介 下载安装 springboot整合与读写操作

MongoDB 简介 MongoDB是一个开源的面向文档的NoSQL数据库&#xff0c;它采用了分布式文件存储的数据结构&#xff0c;是当前非常流行的数据库之一。 以下是MongoDB的主要特点和优势&#xff1a; 面向文档的存储&#xff1a; MongoDB是一个面向文档的数据库管理系统&#xff0…...

使用Redis优化Java应用的性能

使用Redis优化Java应用的性能 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们来探讨如何使用Redis优化Java应用的性能。Redis是一种开源的内存数据结构…...

基于Python的数据可视化大屏的设计与实现

基于Python的数据可视化大屏的设计与实现 Design and Implementation of Python-based Data Visualization Dashboard 完整下载链接:基于Python的数据可视化大屏的设计与实现 文章目录 基于Python的数据可视化大屏的设计与实现摘要第一章 导论1.1 研究背景1.2 研究目的1.3 研…...

什么是N卡和A卡?有什么区别?

名人说&#xff1a;莫听穿林打叶声&#xff0c;何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 本篇笔记整理&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、什么是N卡和A卡&#xff1f;有什么区别&#xff1f;…...

四边形不等式优化

四边形不等式优化 应用于类似以下dp转移方程。 f i min ⁡ 1 ≤ j ≤ i ( w i , j , f i ) f_{i}\min_{1\le j\le i}(w_{i,j},f_{i}) fi​1≤j≤imin​(wi,j​,fi​) 假设 w i , j w_{i,j} wi,j​ 可以在 O ( 1 ) O(1) O(1) 的时间内进行计算。 在正常情况下&#xff0c;…...

这家民营银行起诉担保公司?暴露担保增信兜底隐患

来源 | 镭射财经&#xff08;leishecaijing&#xff09; 助贷领域中&#xff0c;各路资方依赖担保增信业务扩张数年&#xff0c;其风险积压也不容忽视。一旦助贷平台或担保公司兜不住底&#xff0c;资方就将陷入被动。 最近&#xff0c;一则民营银行起诉合作担保公司的消息引…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...