当前位置: 首页 > news >正文

Elasticsearch-ES查询单字段去重

ES 语句

整体数据

GET wkl_test/_search
{"query": {"match_all": {}}
}

结果:

{"took" : 123,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 5,"relation" : "eq"},"max_score" : 1.0,"hits" : [{"_index" : "wkl_test","_type" : "_doc","_id" : "aK0tFpABTkLj5j4c34pE","_score" : 1.0,"_source" : {"name" : "zhangsan","aa" : 1}},{"_index" : "wkl_test","_type" : "_doc","_id" : "aa0uFpABTkLj5j4cFYrJ","_score" : 1.0,"_source" : {"name" : "lisi","aa" : 2}},{"_index" : "wkl_test","_type" : "_doc","_id" : "aq0uFpABTkLj5j4cKYqF","_score" : 1.0,"_source" : {"name" : "wangwu","aa" : 2}},{"_index" : "wkl_test","_type" : "_doc","_id" : "a60uFpABTkLj5j4c2IoF","_score" : 1.0,"_source" : {"name" : "maliu","aa" : 2}},{"_index" : "wkl_test","_type" : "_doc","_id" : "bK1IFpABTkLj5j4cqYop","_score" : 1.0,"_source" : {"name" : "gouqi","aa" : 3}}]}
}

1:collapse折叠功能- 查询去重后的数据列表(ES5.3之后支持)

  • 推荐原因:性能高,占内存小
  • 注意:使用此方式去重时,不会去除掉不存在去重字段的数据。
  • 去重字段只能是数字long类型或keyword。
  • Field Collapsing(字段折叠)不能与scroll、rescore以及search after 结合使用。
GET wkl_test/_search
{"query": {"match_all": {}},"collapse": {"field": "aa"}
}

结果:hits 中total虽然=5,但是只返回了去重后的 3 条数据

{"took" : 2,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 5,"relation" : "eq"},"max_score" : null,"hits" : [{"_index" : "wkl_test","_type" : "_doc","_id" : "aK0tFpABTkLj5j4c34pE","_score" : 1.0,"_source" : {"name" : "zhangsan","aa" : 1},"fields" : {"aa" : [1]}},{"_index" : "wkl_test","_type" : "_doc","_id" : "aa0uFpABTkLj5j4cFYrJ","_score" : 1.0,"_source" : {"name" : "lisi","aa" : 2},"fields" : {"aa" : [2]}},{"_index" : "wkl_test","_type" : "_doc","_id" : "bK1IFpABTkLj5j4cqYop","_score" : 1.0,"_source" : {"name" : "gouqi","aa" : 3},"fields" : {"aa" : [3]}}]}
}

2:cardinality - 查询去重后的数据总数

  • 聚合+cardinality:即去重计算,类似sql中 count(distinct),先去重再求和
  • 注意:使用此方式统计去重后的数量时,会去除掉不存在去重字段的数据。
GET wkl_test/_search
{"query": {"match_all": {}},"size": 0, "aggs": {"distinct_count": {"cardinality": {"field": "aa"}}}
}

结果:distinct_count = 3,说明去重后有3个,既aggregations聚合下,返回了按名字查询去重后的结果数,但是只有去重后的条数,没有具体的数据。

{"took" : 2,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 5,"relation" : "eq"},"max_score" : null,"hits" : [ ]},"aggregations" : {"distinct_count" : {"value" : 3}}
}

3:整体语句

  • 使用collapse 折叠查询后,虽然返回了去重后的数据,但是total 还是所有的数据量
  • 使用 cardinality 聚合 ,虽然在aggs 聚合结果中返回了正确的数据量,但是hits中还是全部的数据
  • 所以我们需要 两个综合使用,如下:
GET wkl_test/_search
{"query": {"match_all": {}},"collapse": {"field": "aa"}, "aggs": {"distinct_count": {"cardinality": {"field": "aa"}}}
}

结果:

{"took" : 3,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 5,"relation" : "eq"},"max_score" : null,"hits" : [{"_index" : "wkl_test","_type" : "_doc","_id" : "aK0tFpABTkLj5j4c34pE","_score" : 1.0,"_source" : {"name" : "zhangsan","aa" : 1},"fields" : {"aa" : [1]}},{"_index" : "wkl_test","_type" : "_doc","_id" : "aa0uFpABTkLj5j4cFYrJ","_score" : 1.0,"_source" : {"name" : "lisi","aa" : 2},"fields" : {"aa" : [2]}},{"_index" : "wkl_test","_type" : "_doc","_id" : "bK1IFpABTkLj5j4cqYop","_score" : 1.0,"_source" : {"name" : "gouqi","aa" : 3},"fields" : {"aa" : [3]}}]},"aggregations" : {"distinct_count" : {"value" : 3}}
}

注:我们使用cardinality聚合后的distinct_count 作为去重后的总数,用 collapse 折叠后的列表作为数据结果集

分页使用解释说明:

  • 1.hits中total的总条数实际上是去重前的总条数,原数据条数,这里我们知道就行,分页中我们并不使用它。hits中数组的大小刚好等于courseAgg聚合的值,数组中的数据就是去重后的数据。

  • 2.aggregations中的courseAgg条数,这个才是去重后的实际条数,也是分页用的总条数。

  • 3.from 查询的偏移量,也就是从哪里开始查。

  • 4.size 查询条数,一次查几条。

  • 接下来,你就可以把它当做一个简单分页查询来用了,传入from和size就ok啦~

JAVA API使用

1:collapse 查询去重的结果集

// 使用collapse来指定去重的字段,例如"your_distinct_field"CollapseBuilder collapseBuilder = new CollapseBuilder("your_distinct_field");searchSourceBuilder.collapse(collapseBuilder);

2:cardinality - 查询去重后的数据总数

		// 添加一个cardinality聚合来计算去重字段的唯一值数量CardinalityAggregationBuilder aggregation = AggregationBuilders.cardinality("distinct_count")//这里是聚合结果的字段名.field("your_distinct_field")//这里是需要聚合的字段.precisionThreshold(40000); // 根据需要调整精度阈值searchSourceBuilder.aggregation(aggregation);

3:整体使用

package com.wenge.system.utils;import org.apache.http.HttpHost;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.metrics.CardinalityAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.ParsedCardinality;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.collapse.CollapseBuilder;import java.io.IOException;
import java.util.Map;/*** @author wangkanglu* @version 1.0* @description* @date 2024-06-17 16:48*/
public class TestES {public static void main(String[] args) throws IOException {//创建ES客户端RestHighLevelClient esClient = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost",9200,"http")));try {// 创建一个搜索请求并设置索引名SearchRequest searchRequest = new SearchRequest("your_index");// 构建搜索源构建器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();// 设置查询条件,例如匹配所有文档,这里根据业务自己修改searchSourceBuilder.query(QueryBuilders.matchAllQuery());// 使用collapse来指定去重的字段,例如"your_distinct_field"CollapseBuilder collapseBuilder = new CollapseBuilder("your_distinct_field");searchSourceBuilder.collapse(collapseBuilder);// 添加一个cardinality聚合来计算去重字段的唯一值数量CardinalityAggregationBuilder aggregation = AggregationBuilders.cardinality("distinct_count")//这里是聚合结果的字段名.field("your_distinct_field")//这里是需要聚合的字段.precisionThreshold(40000); // 根据需要调整精度阈值searchSourceBuilder.aggregation(aggregation);// 设置搜索源searchRequest.source(searchSourceBuilder);// 执行搜索SearchResponse searchResponse = esClient.search(searchRequest, RequestOptions.DEFAULT);SearchHit[] hits = searchResponse.getHits().getHits();for (SearchHit hit : hits) {Map<String, Object> sourceAsMap = hit.getSourceAsMap();System.out.println("去重结果: " + sourceAsMap);}// 处理搜索结果,获取去重数量ParsedCardinality parsedCardinality = searchResponse.getAggregations().get("distinct_count");long distinctCount = parsedCardinality.getValue();System.out.println("去重结果数量:" + distinctCount);} finally {// 关闭clientesClient.close();}}
}

相关文章:

Elasticsearch-ES查询单字段去重

ES 语句 整体数据 GET wkl_test/_search {"query": {"match_all": {}} }结果&#xff1a; {"took" : 123,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0…...

【Apache Doris】周FAQ集锦:第 7 期

【Apache Doris】周FAQ集锦&#xff1a;第 7 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和…...

EE trade:炒伦敦金的注意事项及交易指南

在贵金属市场中&#xff0c;伦敦金因其高流动性和全球认可度&#xff0c;成为广大投资者的首选。然而&#xff0c;在炒伦敦金的过程中&#xff0c;投资者需要注意一些关键点。南华金业小编带您一起来看看。 国际黄金报价 一般国际黄金报价会提供三个价格&#xff1a; 买价(B…...

JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码

JAVA医院绩效考核系统源码 功能特点&#xff1a;大型医院绩效考核系统源码 医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核&#xff0c;并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS…...

Python神经影像数据的处理和分析库之nipy使用详解

概要 神经影像学(Neuroimaging)是神经科学中一个重要的分支,主要研究通过影像技术获取和分析大脑结构和功能的信息。nipy(Neuroimaging in Python)是一个强大的 Python 库,专门用于神经影像数据的处理和分析。nipy 提供了一系列工具和方法,帮助研究人员高效地处理神经影…...

非关系型数据库NoSQL数据层解决方案 之 Mongodb 简介 下载安装 springboot整合与读写操作

MongoDB 简介 MongoDB是一个开源的面向文档的NoSQL数据库&#xff0c;它采用了分布式文件存储的数据结构&#xff0c;是当前非常流行的数据库之一。 以下是MongoDB的主要特点和优势&#xff1a; 面向文档的存储&#xff1a; MongoDB是一个面向文档的数据库管理系统&#xff0…...

使用Redis优化Java应用的性能

使用Redis优化Java应用的性能 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们来探讨如何使用Redis优化Java应用的性能。Redis是一种开源的内存数据结构…...

基于Python的数据可视化大屏的设计与实现

基于Python的数据可视化大屏的设计与实现 Design and Implementation of Python-based Data Visualization Dashboard 完整下载链接:基于Python的数据可视化大屏的设计与实现 文章目录 基于Python的数据可视化大屏的设计与实现摘要第一章 导论1.1 研究背景1.2 研究目的1.3 研…...

什么是N卡和A卡?有什么区别?

名人说&#xff1a;莫听穿林打叶声&#xff0c;何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 本篇笔记整理&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、什么是N卡和A卡&#xff1f;有什么区别&#xff1f;…...

四边形不等式优化

四边形不等式优化 应用于类似以下dp转移方程。 f i min ⁡ 1 ≤ j ≤ i ( w i , j , f i ) f_{i}\min_{1\le j\le i}(w_{i,j},f_{i}) fi​1≤j≤imin​(wi,j​,fi​) 假设 w i , j w_{i,j} wi,j​ 可以在 O ( 1 ) O(1) O(1) 的时间内进行计算。 在正常情况下&#xff0c;…...

这家民营银行起诉担保公司?暴露担保增信兜底隐患

来源 | 镭射财经&#xff08;leishecaijing&#xff09; 助贷领域中&#xff0c;各路资方依赖担保增信业务扩张数年&#xff0c;其风险积压也不容忽视。一旦助贷平台或担保公司兜不住底&#xff0c;资方就将陷入被动。 最近&#xff0c;一则民营银行起诉合作担保公司的消息引…...

vscode禅模式怎么退出

1、如何进入禅模式&#xff1a;查看--外观--禅模式 2、退出禅模式 按二次ESC&#xff0c;就可以退出。...

Java23种设计模式(四)

1、备忘录模式 备忘录模式&#xff08;Memento Pattern&#xff09;保存一个对象的某个状态&#xff0c;以便在适当的时候恢复对象&#xff0c;备忘录模式属于行为型模式。 备忘录模式允许在不破坏封装性的前提下&#xff0c;捕获和恢复对象的内部状态。 实现方式 创建备忘录…...

HTML静态网页成品作业(HTML+CSS)——故宫介绍网页(4个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有4个页面。 二、作品演示 三、代…...

Zookeeper:客户端命令行操作

文章目录 一、help二、ls path三、create四、get path五、set六、stat七、delete八、deleteall 一、help 显示所有操作命令。 二、ls path 使用ls命令来查看当前znode的子节点[可监听] w&#xff1a;监听子节点变化。s&#xff1a;附加次级信息。 三、create 普通创建&am…...

区块链技术介绍和用法

区块链技术是一种分布式账本技术&#xff0c;可以记录和存储一系列交易信息&#xff0c;并通过密码学算法保证信息的安全性和不可篡改性。区块链技术的核心概念是“区块”和“链”。 每个区块包含了一部分交易信息&#xff0c;以及一个指向上一个区块的哈希值。当新的交易发生…...

Upload-Labs-Linux1 使用 一句话木马

解题步骤&#xff1a; 1.新建一个php文件&#xff0c;编写内容&#xff1a; <?php eval($_REQUEST[123]) ?> 2.将编写好的php文件上传&#xff0c;但是发现被阻止&#xff0c;网站只能上传图片文件。 3.解决方法&#xff1a; 将php文件改为图片文件&#xff08;例…...

从 Hadoop 迁移,无需淘汰和替换

我们仍然惊讶于有如此多的客户来找我们&#xff0c;希望从HDFS迁移到现代对象存储&#xff0c;如MinIO。我们现在以为每个人都已经完成了过渡&#xff0c;但每周&#xff0c;我们都会与一个决定进行过渡的主要、高技术性组织交谈。 很多时候&#xff0c;在这些讨论中&#xff…...

深度学习:从理论到应用的全面解析

引言 深度学习作为人工智能&#xff08;AI&#xff09;的核心技术之一&#xff0c;在过去的十年中取得了显著的进展&#xff0c;并在许多领域中展示了其强大的应用潜力。本文将从理论基础出发&#xff0c;探讨深度学习的最新进展及其在各领域的应用&#xff0c;旨在为读者提供全…...

【02】区块链技术应用

区块链在金融、能源、医疗、贸易、支付结算、证券等众多领域有着广泛的应用&#xff0c;但是金融依旧是区块链最大且最为重要的应用领域。 1. 区块链技术在金融领域的应用 1.2 概况 自2019年以来&#xff0c;国家互联网信息办公室已发布八批境内区块链信息服务案例清单&#…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...