分类判决界面---W-H、H-K算法
本篇文章是博主在人工智能等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在AI学习笔记:
AI学习笔记(9)---《分类判决界面---W-H、H-K算法》
分类判决界面---W-H、H-K算法
目录
一、算法原理
1.1 W-H算法
1.2 H-K算法
二、实验要求
三、实验流程
四、运行结果
一、算法原理
1.1 W-H算法
对于两类问题,设n+1维增广训练模式x1, x2, ...,xN已符号规范化。如果训练模式是线性可分的,则存在权矢量w使不等式组
成立,即不等式组是一致的,有解。若训练模式是非线性可分的,表明不存在权矢量w对所有的训练模式都能正确分类,也就是说,无论任何的权矢量w,都有某些模式被错分,不等式不能都成立,即不等式组是不一致的,不等式组无解。在这种情况下,我们希望所求得的权矢量使尽可能多的不等式被满足,等价地说,使最少的训练模式被错分,或所得界面较稳健使对待分类模式有较好的分类效果。
将上面的不等式组写成矩阵方程形式,为使解可靠,引人N维余量矢量b>0,于是不等式方程组变为
1.2 H-K算法
其他分类判决界面方法见
分类判决界面---W-H、H-K算法
二、实验要求
采用下列两类模式为样本:
w1 = [0 0 0; 1 0 0; 1 0 1; 1 1 0]
w2 = [0 0 1; 0 1 1; 0 1 0; 1 1 1; 1 -1 0]
编程实现W-H算法和HK算法,对任意输入新样本进行分类判别。
三、实验流程
3.1 W-H 算法matlab代码
新建main.m文件
clc;
close all;
%% 数据预处理
X1 = [0 0 0; 1 0 0; 1 0 1; 1 1 0];
X2 = [0 0 1; 0 1 1; 0 1 0; 1 1 1; 1 -1 0];
X = [X1;-X2];
[N1,W] = size(X);
b = ones(N1,1);
%b = [9; 3; 1; 9; 1; 4; 2; 1];%% W-H 算法
rou1 =1;
k1 = 100;
%w = zeros(W,1);
w = ones(W,1);
[w1, a1] = W_H(X,w,b,rou1,k1);
disp("解矢量:");
disp(w1);
disp("迭代次数:");
disp(a1);
% 画图
figure()
x1=X1(:,1);
y1=X1(:,2);
z1=X1(:,3);
scatter3(x1,y1,z1,'k'); %圆圈为正样本
hold on;
x2=X2(:,1);
y2=X2(:,2);
z2=X2(:,3);
scatter3(x2,y2,z2,'P'); %五角星为负样本
hold on;
x3 = w1(1);
y3 = w1(2);
z3 = w1(3);
[X,Y] = meshgrid(-2:2:2); %以法线绘制平面
Z = -(x3 * X + y3 * Y) / z3;
mesh(X,Y,Z,'FaceAlpha', '0.8');
xlabel('x'),ylabel('y'),zlabel('z');
title('W-H算法分类判决界面');
新建W_H.m文件
function [w,a] = W_H(X,w,b,rou,k)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X:符号化的训练样本
% b:余量(初值设置为大于零的较小的值)
% rou:参数(设为0.5)
% k:迭代次数
% w:解矢量
% a:算法结束时的迭代次数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = size(X,1); % 样本数量
X = X';
a = 0;
while a < k % 最大迭代次数a = a + 1;old_w = w; for i = 1:N w = w + (rou/i)*(b(i) - w'*X(:,i))*X(:,i); % 迭代w的值endif norm(w - old_w) < 0.0001 % 求向量范数,如果收敛了就提前结束breakend
end
end
3.2 H-K 算法matlab代码
main.m文件下面补充
%% H-K 算法
X = [X1;-X2];
[N1,W] = size(X);
b = ones(N1,1);
%b = [9; 3; 1; 9; 1; 4; 2; 1];
rou2 = 0.5;
[w2, a2] = H_K(X,b,rou2);
disp("解矢量:");
disp(w2);
disp("迭代次数:");
disp(a2);
% 画图
figure()
x1=X1(:,1);y1=X1(:,2);z1=X1(:,3);
scatter3(x1,y1,z1,'o'); % 圆圈为正样本
hold on;
x2=X2(:,1);y2=X2(:,2);z2=X2(:,3);
scatter3(x2,y2,z2,'P'); % 五角星为负样本
hold on;
x3 = w2(1);y3 = w2(2);z3 = w2(3);
[X,Y] = meshgrid(-2:2:2); % 以法线绘制平面
Z = -(x3 * X + y3 * Y) / z3;
mesh(X,Y,Z,'FaceAlpha', '0.8');
xlabel('x'),ylabel('y'),zlabel('z');
hold on
title('H-K算法分类判决界面');
新建H_K.m文件
function [w , a] = H_K(X,b,rou)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X:符号化的训练样本
% b:余量(初值设置为大于零的较小的值)
% rou:参数(设为0.5)
% k:迭代次数
% w:解矢量
% a:算法结束时的迭代次数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
XX = inv(X'*X)*X'; % 求符号化的训练样本的伪逆矩阵
a = 0;
while 1 % 循环开始a = a + 1;w = XX*b; % 求w值 e = X*w - b; % 计算误差矢量if sum(abs(e) >= 0.001) == 0 % 如果e为零矢量,则算法停止,此时判定为0的标准为0.001breakelseif sum(abs(e > 0)) == 0 % 如果e没有正分量的非零矢量,或负的分量停止变为正值,则算法停止breakelseb = b + rou*(e + abs(e)); % 迭代bw = XX*b; % 迭代wend
end
end
四、运行结果
4.1 W-K 算法运行结果


4.2 H-K 算法运行结果


文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者私信联系作者。
相关文章:

分类判决界面---W-H、H-K算法
本篇文章是博主在人工智能等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在AI学习笔记&#…...

Python基础教程(三十):math模块
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝Ὁ…...

你只是重新发现了一些东西
指北君关于另外一条思维路径的发现。 "自以为是"的顿悟时刻 有很多时候,我会"自以为是"的发现/发明一些东西。这种"自以为是"的时刻通常还带有一些骄傲自豪的情绪。这种感觉特别像古希腊博学家阿基米德 在苦思冥想如何测量不规则物体…...

【英伟达GPU的挑战者】Groq—AI大模型推理的革命者
目录 引言第一部分:Groq简介第二部分:Groq的特点与优势1、高性能推理加速2、近存计算技术3、专用ASIC芯片设计4、低延迟与高吞吐量5、成本效益分析6、易用性与集成性7、软件与硬件的协同设计 第三部分:Groq的使用指南1、准备工作2、简单使用样…...

Python学习路线
Python学习路线 领取资料 一、Python基础知识 Python入门:了解Python的安装方法、如何运行Python程序以及交互模式的使用,同时学习注释的添加方法。 数据类型:掌握Python中的各种数据类型,包括数字、布尔值、字符串、列表、元…...
C++ std::forward()
在线调试网站: https://wandbox.org/ #include <iostream> #include <thread> #include <mutex> void func(int &&args) {std::cout << args << std::endl; }int main () {int a 10;func(20); …...

常见的8种排序(含代码):插入排序、冒泡排序、希尔排序、快速排序、简单选择排序、归并排序、堆排序、基数排序
时间复杂度O(n^2) 1、插入排序 (Insertion Sort) 从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中从后向前扫描;如果该元素(已排序)大于新元素,将该元素移到…...

go语言day2
使用cmd 中的 go install ; go build 命令出现 go cannot find main module 错误怎么解决? go学习-问题记录(开发环境)go: cannot find main module; see ‘go help modules‘_go: no flags specified (see go help mod edit)-CSDN博客 在本…...

vue echarts画多柱状图+多折线图
<!--多柱状图折线图--> <div class"echarts-box" id"multiBarPlusLine"></div>import * as echarts from echarts;mounted() {this.getMultiBarPlusLine() },getMultiBarPlusLine() {const container document.getElementById(multiBar…...

cesium for unity 打包webgl失败,提示不支持
platform webgl is not supported with HDRP use the Vulkan graphics AR instead....
python开发基础——day7 序列类型方法
一、初识序列类型方法 序列类型的概念:数据的集合,在序列类型里面可以存放任意的数据,也可以对数据进行更方便的操作,这个操作是叫增删改查(crud) ( 增加(Creat),读取查询(Retrieve),更新(Update)…...
用java写一个二叉树翻转
class TreeNode {int val;TreeNode left, right;TreeNode(int val) {this.val val;left right null;} }public class BinaryTree {TreeNode root;// 递归翻转二叉树public TreeNode invertTree(TreeNode root) {if (root null) {return null;}// 递归翻转左子树和右子树Tre…...

数学建模系列(3/4):典型建模方法
目录 引言 1. 回归分析 1.1 线性回归 基本概念 Matlab实现 1.2 多元回归 基本概念 Matlab实现 1.3 非线性回归 基本概念 Matlab实现 2. 时间序列分析 2.1 时间序列的基本概念 2.2 移动平均 基本概念 Matlab实现 2.3 指数平滑 基本概念 Matlab实现 2.4 ARIM…...

AI播客下载:Machine Learning Street Talk(AI机器学习)
该频道由 Tim Scarfe 博士、Yannic Kilcher 博士和 Keith Duggar 博士管理。 他们做了出色的工作,对每个节目进行了彻底的研究,并与机器学习行业中一些受过最高教育、最全面的嘉宾进行了双向对话。 每一集都会教授一些新内容,并且提供未经过滤…...

鱼缸补水器工作原理是什么
鱼缸补水器是一种应用广泛的智能设备,主要用于自动监测和补充鱼缸内的水位,以确保鱼类生存环境的稳定。其工作原理简单而高效,为饲主提供了方便和安全的使用体验。 该补水器通常由两部分组成:控制器和吸盘。首先,用户…...

Linux-Tomcat服务配置到系统服务
目录 前言一、系统环境二、配置步骤step1 了解环境的安装路径step2 配置生成tomcat.pid文件step3 配置tomcat.service文件 三、测试systemctl命令管理Tomcat服务3.1 systemctl命令启动Tomcat服务3.2 systemctl命令查看Tomcat服务3.3 systemctl命令关闭Tomcat服务3.4 systemctl命…...

Python抓取高考网图片
Python抓取高考网图片 一、项目介绍二、完整代码一、项目介绍 本次采集的目标是高考网(http://www.gaokao.com/gkpic/)的图片,实现图片自动下载。高考网主页如下图: 爬取的流程包括寻找数据接口,发送请求,解析图片链接,向图片链接发送请求获取数据,最后保存数据。 二…...
Vue配置项data
data 目录 data 目录类型介绍关键原理编译过程 Vue2Vue3 📌Vue.js 中的 data(Obj/Function)属性是 Vue 实例的一个配置选项 类型介绍 对象式 对于根实例或者非复用组件,通常直接提供一个对象字面量作为 data 的值。在对象式中…...

在IDEA 2024.1.3 (Community Edition)中创建Maven项目
本篇博客承继自博客:Windows系统Maven下载安装-CSDN博客 Maven版本:maven-3.9.5 修改设置: 首先先对Idea的Maven依赖进行设置;打开Idea,选择“Costomize”,选择最下边的"All settings" 之后找…...

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-28批量规范化
28批量规范化 """可持续加速深层网络的收敛速度""" import torch from torch import nn import liliPytorch as lp import matplotlib.pyplot as pltdef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):""&quo…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...