如何验证Rust中的字符串变量在超出作用域时自动释放内存?
讲动人的故事,写懂人的代码
在公司内部的Rust培训课上,讲师贾克强比较了 Rust、Java 和 C++ 三种编程语言在变量越过作用域时自动释放堆内存的不同特性。
Rust 通过所有权系统和借用检查,实现了内存安全和自动管理,从而避免了大部分内存泄漏。Rust 自动管理标准库中数据类型(如 Box、Vec、String)的堆内存,并在这些类型的变量离开作用域时自动释放内存,即使程序员未显式编写清理堆内存的代码。
只有当程序员实现自定义的数据类型,并且该类型拥有需要手动管理的资源时,才需要在 drop 函数中编写清理代码。如果在这种情况下忘记了编写清理代码,确实可能导致资源泄漏,包括但不限于内存泄漏。
相比之下,Java 主要由垃圾回收器(GC)控制内存管理,而 C++ 则需要程序员通过构造函数和析构函数手动控制内存的分配和释放。
席双嘉提出问题:“我对Rust中的字符串变量在超出作用域时自动释放内存的机制非常感兴趣。但如何能够通过代码实例来验证这一点呢?”

贾克强说这是一个好问题,可以作为今天的作业。他请对这个问题感兴趣的同学,在课下找AI编程助手小艾来完成这个作业。
赵可菲对这个问题颇感兴趣。在小艾的帮助下,她迅速完成了代码编写并且成功运行。为了让Rust新手能够理解,她请小艾在代码中的每一行关键语句前加上了注释。此外,她还在main函数后添加了这个程序的运行结果输出,如代码清单1-1所示。
代码清单1-1 验证当字符串变量超出范围时,Rust会自动调用该变量的drop函数
// 使用 jemallocator 库中的 Jemalloc 内存分配器
use jemallocator::Jemalloc;// 用属性(用于为代码的特定部分提供元信息的注释)定义一个全局的内存分配器,使用 Jemalloc 作为系统的全局内存分配器
#[global_allocator]
static GLOBAL: Jemalloc = Jemalloc;fn main() {{// 进入一个新的作用域,作用域是用大括号 `{}` 包围的代码块// 创建一个包含 100M 大字符串的自定义结构体let _large_string_owner = LargeStringOwner::new(100_000_000); // 100 MB// 打印创建大字符串后消息println!("Large string created.");} // 这里作用域结束,`large_string_owner` 变量自动销毁,`drop` 函数被调用// 打印离开作用域后的消息println!("Large string scope ended.");
}
// 该程序运行后的输出为:
// Large string created.
// Dropping LargeStringOwner, releasing large string memory.
// Large string scope ended.// 自定义一个包含大字符串的结构体,并实现 Drop trait
struct LargeStringOwner {// 包含一个字符串字段,但允许未使用(避免编译器警告)#[allow(dead_code)]content: String,
}impl LargeStringOwner {// 为结构体实现一个新的构造函数,接受字符串大小作为参数相关文章:
如何验证Rust中的字符串变量在超出作用域时自动释放内存?
讲动人的故事,写懂人的代码 在公司内部的Rust培训课上,讲师贾克强比较了 Rust、Java 和 C++ 三种编程语言在变量越过作用域时自动释放堆内存的不同特性。 Rust 通过所有权系统和借用检查,实现了内存安全和自动管理,从而避免了大部分内存泄漏。Rust 自动管理标准库中数据类…...
55.Python pip install 安装失败的一个情况Requirement already satisfied
1.问题 以前使用Pycharm 社区版开发的一个项目,今天使用PyCharm 专业版打开,原项目的虚拟环境从venv更换为.venv,然后重新安装插件。安装时,提示Requirement already satisfied: qt_material in c:\tools\python37\lib\site-packa…...
Axios进阶
目录 axios实例 axios请求配置 拦截器 请求拦截器 响应拦截器 取消请求 axios不仅仅是简单的用基础请求用法的形式向服务器请求数据,一旦请求的端口与次数变多之后,简单的请求用法会有些许麻烦。所以,axios允许我们进行创建axios实例、ax…...
C++ 丑数
描述 把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第 n个丑数。 数据范围:0≤𝑛≤20000≤n≤…...
小山菌_代码随想录算法训练营第三十天|122.买卖股票的最佳时机II、55. 跳跃游戏 、45.跳跃游戏II、1005.K次取反后最大化的数组和
122.买卖股票的最佳时机II 文档讲解:代码随想录.买卖股票的最佳时机II 视频讲解:贪心算法也能解决股票问题!LeetCode:122.买卖股票最佳时机II 状态:已完成 代码实现 class Solution { public:int maxProfit(vector<…...
SpringMVC系列七: 手动实现SpringMVC底层机制-上
手动实现SpringMVC底层机制 博客的技术栈分析 🛠️具体实现细节总结 🐟准备工作🍍搭建SpringMVC底层机制开发环境 实现任务阶段一🍍开发ZzwDispatcherServlet🥦说明: 编写ZzwDispatcherServlet充当原生的DispatcherSer…...
嵌入式web 服务器boa的编译和移植
编译环境:虚拟机 ubuntu 18.04 目标开发板:飞凌OKA40i-C开发板, Linux3.10 操作系统 开发板本身已经移植了boa服务器,但是在使用过程中发现POST方法传输大文件时对数据量有限制,超过1M字节就无法传输,这是…...
什么是js?特点是什么?组成部分?
Js是一种直译式脚本语言,一种动态类型,弱类型,基于原型的高级语言。 直译式:js程序运行过程中直接编译成机器语言。 脚本语言:在程序运行过程中逐行进行解释说明,不需要预编译。 动态类型:js…...
Java 面试题:如何保证集合是线程安全的? ConcurrentHashMap 如何实现高效地线程安全?
在多线程编程中,保证集合的线程安全是一个常见而又重要的问题。线程安全意味着多个线程可以同时访问集合而不会导致数据不一致或程序崩溃。在 Java 中,确保集合线程安全的方法有多种,包括使用同步包装类、锁机制以及并发集合类。 最简单的方法…...
打工人的PPT救星来了!用这款AI工具,10秒生成您的专属PPT
今天帮同事解决了一个代码合并的问题。其实问题不复杂,要把1的代码合到2的位置: 这个处理方式其实很简单,使用 “git cherry-pick hash值” 就可以。 同事直接对我赞许有加,不曾想被领导看到了,对我说了一句ÿ…...
GIT 合拼
合拼有多种方式: 1)合拼分支: git merge [source-branch] 2)合拼提交 : git cherry-pick [commit-hash] 3)合拼单个文件: git checkout [source-branch] – [file] 以上合拼,比如将分…...
利用 Python 和 AI 技术制作智能问答机器人
利用 Python 和 AI 技术制作智能问答机器人 引言 在人工智能的浪潮下,智能问答机器人成为了一种非常实用的技术。它们能够处理大量的查询,提供即时的反馈,并且可以通过机器学习技术不断优化自身的性能。本文将介绍如何使用 Python 来开发一…...
electron系列(一)调用dll
用electron的目的,其实很简单。就是web架构要直接使用前端电脑的资源,但是浏览器限制了使用,所以用electron来达到这个目的。其中调用dll是一个非常基本的操作。 安装 ffi-napi 和 ref-napi 包: npm install ffi-napi ref-napi main.js&…...
VUE3实现个人网站模板源码
文章目录 1.设计来源1.1 网站首页页面1.2 个人工具页面1.3 个人日志页面1.4 个人相册页面1.5 给我留言页面 2.效果和源码2.1 动态效果2.2 目录结构 源码下载万套模板,程序开发,在线开发,在线沟通 作者:xcLeigh 文章地址࿱…...
C语言 | Leetcode C语言题解之第162题寻找峰值
题目: 题解: int findPeakElement(int* nums, int numsSize) {int ls_max0;for(int i1;i<numsSize;i){if(nums[ls_max]>nums[i]);else{ls_maxi;}}return ls_max; }...
利用pickle保存和加载对象
使用 pickle.dump 保存下来的文件可以使用 pickle.load 打开和读取。以下是一个示例,展示了如何使用 pickle 模块保存和加载对象: 保存对象 import pickle# 假设有一个对象 obj obj {"key": "value"}# 将对象保存到文件 with ope…...
定制汽车霍尔传感器
磁电效应霍尔传感器、饱和霍尔传感器、非线性霍尔传感器 霍尔传感器原理 霍尔传感器的工作原理基于霍尔效应,即当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端会产生电位差。这种现象称为霍尔效应,两端具有的电位差值称为…...
【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA的巡演(100分) - 三语言AC题解(Python/Java/Cpp)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 …...
ChatGPT 简介
ChatGPT 是一种基于大型语言模型的对话系统,由 OpenAI 开发。它的核心是一个深度学习模型,使用了 GPT(Generative Pre-trained Transformer)架构。以下是 ChatGPT 的原理和工作机制的详细介绍: ### GPT 架构 1. **Tr…...
大数据实训室建设可行性报告
一、建设大数据实训室的背景与意义 随着信息技术的飞速发展,大数据已成为推动社会进步和经济发展的重要力量。中高职院校作为技能型人才培养的摇篮,承担着为社会输送大数据领域高素质、高技能人才的重要任务。因此,建设大数据实训室…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
