当前位置: 首页 > news >正文

PyTorch -- RNN 快速实践

  • RNN Layer torch.nn.RNN(input_size,hidden_size,num_layers,batch_first)

    • input_size: 输入的编码维度
    • hidden_size: 隐含层的维数
    • num_layers: 隐含层的层数
    • batch_first: ·True 指定输入的参数顺序为:
      • x:[batch, seq_len, input_size]
      • h0:[batch, num_layers, hidden_size]
  • RNN 的输入

    • x:[seq_len, batch, input_size]
      • seq_len: 输入的序列长度
      • batch: batch size 批大小
    • h0:[num_layers, batch, hidden_size]
  • RNN 的输出

    • y: [seq_len, batch, hidden_size]

在这里插入图片描述


  • 实战之预测 正弦曲线:以下会以此为例,演示 RNN 预测任务的部署
    在这里插入图片描述
    • 步骤一:确定 RNN Layer 相关参数值并基于此创建 Net

      import numpy as np
      from matplotlib import pyplot as pltimport torch
      import torch.nn as nn
      import torch.optim as optimseq_len     = 50
      batch       = 1
      num_time_steps = seq_leninput_size  = 1
      output_size = input_size
      hidden_size = 10  	
      num_layers = 1  	
      batch_first = True class Net(nn.Module):  ## model 定义def __init__(self):super(Net, self).__init__()self.rnn = nn.RNN(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=batch_first)# for p in self.rnn.parameters():# 	nn.init.normal_(p, mean=0.0, std=0.001)self.linear = nn.Linear(hidden_size, output_size)def forward(self, x, hidden_prev):out, hidden_prev = self.rnn(x, hidden_prev)# out: [batch, seq_len, hidden_size]out = out.view(-1, hidden_size)  # [batch*seq_len, hidden_size]out = self.linear(out) 			 # [batch*seq_len, output_size]out = out.unsqueeze(dim=0)    # [1, batch*seq_len, output_size]return out, hidden_prev
      
    • 步骤二:确定 训练流程

      lr=0.01def tarin_RNN():model = Net()print('model:\n',model)criterion = nn.MSELoss()optimizer = optim.Adam(model.parameters(), lr)hidden_prev = torch.zeros(num_layers, batch, hidden_size)  #初始化hl = []for iter in range(100):  # 训练100次start = np.random.randint(10, size=1)[0]  ## 序列起点time_steps = np.linspace(start, start+10, num_time_steps)  ## 序列data = np.sin(time_steps).reshape(num_time_steps, 1)  ## 序列数据x = torch.tensor(data[:-1]).float().view(batch, seq_len-1, input_size)y = torch.tensor(data[1: ]).float().view(batch, seq_len-1, input_size)  # 目标为预测一个新的点output, hidden_prev = model(x, hidden_prev)hidden_prev = hidden_prev.detach()  ## 最后一层隐藏层的状态要 detachloss = criterion(output, y)model.zero_grad()loss.backward()optimizer.step()if iter % 100 == 0:print("Iteration: {} loss {}".format(iter, loss.item()))l.append(loss.item())#############################绘制损失函数#################################plt.plot(l,'r')plt.xlabel('训练次数')plt.ylabel('loss')plt.title('RNN LOSS')plt.savefig('RNN_LOSS.png')return hidden_prev,modelhidden_prev,model = tarin_RNN()
      
    • 步骤三:测试训练结果

      start = np.random.randint(3, size=1)[0]  ## 序列起点
      time_steps = np.linspace(start, start+10, num_time_steps)  ## 序列
      data = np.sin(time_steps).reshape(num_time_steps, 1)  ## 序列数据
      x = torch.tensor(data[:-1]).float().view(batch, seq_len-1, input_size)
      y = torch.tensor(data[1: ]).float().view(batch, seq_len-1, input_size)  # 目标为预测一个新的点    predictions = []  ## 预测结果
      input = x[:,0,:]
      for _ in range(x.shape[1]):input = input.view(1, 1, 1)pred, hidden_prev = model(input, hidden_prev)input = pred  ## 循环获得每个input点输入网络predictions.append(pred.detach().numpy()[0])
      x= x.data.numpy()
      y = y.data.numpy( )
      plt.scatter(time_steps[:-1], x.squeeze(), s=90)
      plt.plot(time_steps[:-1], x.squeeze())
      plt.scatter(time_steps[1:],predictions)  ## 黄色为预测
      plt.show()
      

      在这里插入图片描述


【高阶】上述例子比较简单,便于入门以推理到自己的目标任务,实际 RNN (长时间序列) 训练可能更有难度,可以添加

  • 对于梯度爆炸的解决:
    for p in model.parameters()"print(p.grad.norm())  ## 查阅梯度,看看是否爆炸torch.nn.utils.clip_grad_norm_(p, 10)  ## grad 限幅,其中的 norm 后面的_ 表示 in place 操作
    
  • 对于梯度消失的解决:-> LSTM

  • 另一个很好的实例关于飞行轨迹预测- - RNN-博客链接,可供学习参考
  • B站视频参考资料

相关文章:

PyTorch -- RNN 快速实践

RNN Layer torch.nn.RNN(input_size,hidden_size,num_layers,batch_first) input_size: 输入的编码维度hidden_size: 隐含层的维数num_layers: 隐含层的层数batch_first: True 指定输入的参数顺序为: x:[batch, seq_len, input_size]h0:[batc…...

SpringBoot 快速入门(保姆级详细教程)

目录 一、Springboot简介 二、SpringBoot 优点: 三、快速入门 1、新建工程 方式2:使用Spring Initializr创建项目 写在前面: SpringBoot 是 Spring家族中的一个全新框架,用来简化spring程序的创建和开发过程。SpringBoot化繁…...

【第18章】Vue实战篇之登录界面

文章目录 前言一、数据绑定1. 数据绑定2. 数据清空 二、表单校验1. 代码2. 展示 三、登录1.登录按钮2.user.js3. login 四、展示总结 前言 上一章完成用户注册&#xff0c;这一章主要做用户登录。 一、数据绑定 登录和注册使用相同的数据绑定 1. 数据绑定 <!-- 登录表单 -…...

[C++]使用C++部署yolov10目标检测的tensorrt模型支持图片视频推理windows测试通过

【测试通过环境】 vs2019 cmake3.24.3 cuda11.7.1cudnn8.8.0 tensorrt8.6.1.6 opencv4.8.0 【部署步骤】 获取pt模型&#xff1a;https://github.com/THU-MIG/yolov10训练自己的模型或者直接使用yolov10官方预训练模型 下载源码&#xff1a;https://github.com/laugh12321/yol…...

分享uniapp + Springboot3+vue3小程序项目实战

分享uniapp Springboot3vue3小程序项目实战 经过10天敲代码&#xff0c;终于从零到项目测试完成&#xff0c;一个前后端分离的小程序实战项目学习完毕 时间从6月12日 到6月22日&#xff0c;具有程序开发基础&#xff0c;第一次写uniapp,Springboot以前用过&#xff0c;VUE3也…...

Ubuntu 24.04安装zabbix7.0.0图形中文乱码

当zabbix安装完成后&#xff0c;设置中文界面时&#xff0c;打开图形&#xff0c;中文内容会显示方框乱码&#xff0c;是因为服务器字体中没有相关的中文字体&#xff0c;需要更换。 1、找到中文字体&#xff0c;可以在网络上下载《得意黑》开源字体&#xff0c;也可以在windo…...

MybatisPlus 调用 原生SQL

方式一 DemoMapper.java Mapper public interface DemoMapper extends BaseMapper<TableConfig> {Update("${sql}")int createTable(Param("sql") String sql); }测试代码 SpringBootTest class DemoMapperTest {Resourceprivate DemoMapper demo…...

1.SG90

目录 一.实物图 二.原理图 三.简介 四.工作原理 一.实物图 二.原理图 三.简介 舵机&#xff08;英文叫Servo&#xff09;&#xff0c;是伺服电机的一种&#xff0c;伺服电机就是带有反馈环节的电机&#xff0c;这种电机可以进行精确的位置控制或者输出较高的扭矩。舵机…...

【yolov8语义分割】跑通:下载yolov8+预测图片+预测视频

1、下载yolov8到autodl上 git clone https://github.com/ultralytics/ultralytics 下载到Yolov8文件夹下面 另外&#xff1a;现在yolov8支持像包一样导入&#xff0c;pip install就可以 2、yolov8 语义分割文档 看官方文档&#xff1a;主页 -Ultralytics YOLO 文档 还能切…...

基于STM8系列单片机驱动74HC595驱动两个3位一体的数码管

1&#xff09;单片机/ARM硬件设计小知识&#xff0c;分享给将要学习或者正在学习单片机/ARM开发的同学。 2&#xff09;内容属于原创&#xff0c;若转载&#xff0c;请说明出处。 3&#xff09;提供相关问题有偿答疑和支持。 为了节省单片机MCU的IO口资源驱动6个数码管&…...

Jlink下载固件到RAM区

Jlink下载固件到RAM区 准备批处理搜索exe批处理读取bin数据解析调用jlink批处理准备jlink脚本 调用执行 环境&#xff1a;J-Flash V7.96g 平台&#xff1a;arm cortex-m3 准备批处理 搜索exe批处理 find_file.bat echo off:: 自动识别脚本名和路径 set "SCRIPT_DIR%~dp…...

Kotlin基础——Typeclass

高阶类型 如在Iterable新增泛型方法时 interface Iterable<T> {fun filter(p: (T) -> Boolean): Iterable<T>fun remove(p: (T) -> Boolean): Iterable<T> filter { x -> !p(x) } }对应的List、Set实现上述方法时仍需要返回具体的类型 interfac…...

DC-DC 高压降压、非隔离AC-DC、提供强大的动力,选择优质电源芯片-(昱灿)

畅享长续航&#xff0c;尽在我们的充电芯片&#xff01; 无论是手机、平板还是智能设备&#xff0c;长时间使用后电量不足总是令人头疼。然而&#xff0c;我们的充电芯片将为您带来全新的充电体验&#xff01;采用先进的技术&#xff0c;我们的充电芯片能够提供快速而稳定的充电…...

GPT-4o的视觉识别能力,将绕过所有登陆的图形验证码

知识星球&#x1f517;除了包含技术干货&#xff1a;《Java代码审计》《Web安全》《应急响应》《护网资料库》《网安面试指南》还包含了安全中常见的售前护网案例、售前方案、ppt等&#xff0c;同时也有面向学生的网络安全面试、护网面试等。 我们来看一下市面上常见的图形验证…...

【LinuxC语言】进程间的通信——管道

文章目录 前言不同进程间通信的方式管道匿名管道和命名管道半双工与全双工管道相关函数创建管道总结前言 在Linux操作系统中,进程是执行中的程序的实例。每个进程都有自己的地址空间,数据栈以及其他用于跟踪进程执行的辅助数据。操作系统管理这些进程,并通过调度算法来分享…...

CompletableFuture 基本用法

一、 CompletableFuture简介 CompletableFuture 是 Java 8 引入的一个功能强大的类&#xff0c;用于异步编程和并发处理。它提供了丰富的 API 来处理异步任务的结果&#xff0c;支持函数式编程风格&#xff0c;并允许通过链式调用组合多个异步操作。 二、CompletableFuture中…...

网页如何发布到服务器上

将网页发布到服务器上的过程涉及多个步骤&#xff0c;包括准备阶段、选择托管提供商、发布网站等。12 准备阶段&#xff1a; 确保在本地开发环境中对网站进行了充分的测试&#xff0c;包括功能测试、性能测试和安全测试。 检查Web.config文件&#xff0c;确保所有的配置设置…...

Jenkins简要说明

Jenkins 是一个开源的持续集成和持续部署&#xff08;CI/CD&#xff09;工具&#xff0c;广泛用于自动化软件开发过程中的构建、测试和部署等任务。它是基于Java开发的&#xff0c;因此可以在任何支持Java的平台上运行&#xff0c;并且能够与各种操作系统、开发工具和插件无缝集…...

C# 比较基础知识:最佳实践和技巧

以下是一些在 C# 中进行比较的技巧和窍门的概述。 1. 比较原始类型 对于原始类型&#xff08;int、double、char 等&#xff09;&#xff0c;可以使用标准比较运算符。 int a 5; int b 10; bool isEqual (a b); // false bool isGreater (a > b); // false bool is…...

Ansible 自动化运维实践

随着 IT 基础设施的复杂性不断增加&#xff0c;手动运维已无法满足现代企业对高效、可靠的 IT 运维需求。Ansible 作为一款开源的自动化运维工具&#xff0c;通过简洁易用的 YAML 语法和无代理&#xff08;agentless&#xff09;架构&#xff0c;极大简化了系统配置管理、应用部…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...