当前位置: 首页 > news >正文

什么是孪生素数猜想

什么是孪生素数猜想

素数p与素数p+2有无穷多对

孪生素数的公式(详见百度百科:孪生素数公式)

利用素数的判定法则,可以得到以下的结论:“若自然数q与q+2都不能被任何不大于\sqrt{q+2}的素数 整除,则q与q + 2都是素数”。这是因为一个自然数n是素数当且仅当它不能被任何小于等于\sqrt{n}的素数整除。 用数学的语言表示以上的结论,就是:

存在一组自然数

b_{1},b_{2},....,b_{k}

使得

q=p_{1}m_{1}+b_{1}=p_{2}m_{2}+b_{2}=...=p_{k}m_{k}+b_{k}

.......(1)

其中 p_{1},p_{2},.....,p_{k}表示从小到大排列时的前k个素数:2,3,5,....。并且满足

1≦ i ≦ k,

b_{i}\prec p_{i}

b_{i}\neq 0, b_{i}\neq p_{i}-2.

这样解得的自然数q如果满足q\prec p_{k+1}^{2}-2,

则q与q+2是一对孪生素数。

我们可以把(1)式的内容等价转换成为同余方程组表示:

q ≡b_{1} (modp_{1}), q ≡b_{2}(modp_{2}), ..., q ≡b_{k}(mod p_{k}).....(2)

由于(2)的模p_{1},p_{2},.....,p_{k}都是素数,因此两两互素,根据孙子定理(中国剩余定理)知,对于给定的 b_{1},b_{2},....,b_{k},(2)式有唯一 一个小于p_{1}p_{2}...p_{k}的正整数解。

范例

例如k=1时,

q=2m_{1}+1

解得q=3, 5。由于5\prec 3^{2}-2,所以可知3与3+2、5与5+2都是孪生素数。这样就求得了区间(3, 3^{2})里的全部孪生素数对。

又比如k=2时,

列出方程

q=2m_{1}+1=3m_{2}+2

解得q=5,11,17。由于17<5^{2}-2,所以11与11+2、17与17+2都是了孪生素数。由于这已经是所有可能的b_{1},b_{2},....,b_{k}值,所以这样就求得了区间(5, 5^{2})的全部孪生素数对。

k=3时5m_{3}+15m_{3}+25m_{3}+4
q=2m_{1}+1=3m_{2}+211 ;411729

由于这已经是所有可能的b_{1},b_{2},....,b_{k}值,所以这样就求得了区间(7, 7^{2})的全部孪生素数对。

k=4时7m_{4}+17m4+27m4+37m4+47m4+6
q=2m_{1}+1=3m_{2}+2=5m_{3}+1711911011141
q=2m_{1}+1=3m_{2}+2=5m_{3}+219710717137167
q=2m_{1}+1=3m_{2}+2=5m_{3}+42914959179209

    由于这已经是所有可能的b_{1},b_{2},....,b_{k}值,所以这样就求得了区间(11, 11^{2})的全部孪生素数对(8个小于121-2的解)。       仿此下去可以一个不漏地求得任意大的数以内的全部孪生素数对。

结论推广

孪生素数猜想就是在k值任意大时(1)和(2)式都有小于p_{k+1}^{2}-2的解。问题已经转入初等数论范围。 参考文献,孪生质数公式,【中等数学】2000年1期

相关文章:

什么是孪生素数猜想

什么是孪生素数猜想 素数p与素数p2有无穷多对 孪生素数的公式&#xff08;详见百度百科&#xff1a;孪生素数公式&#xff09; 利用素数的判定法则&#xff0c;可以得到以下的结论&#xff1a;“若自然数q与q2都不能被任何不大于的素数 整除&#xff0c;则q与q 2都是素数”…...

Python学习笔记16:进阶篇(五)异常处理

异常 在编程中&#xff0c;异常是指程序运行过程中发生的意外事件&#xff0c;这些事件通常中断了正常的指令流程。它们可能是由于错误的输入数据、资源不足、非法操作或其他未预料到的情况引起的。Python中&#xff0c;当遇到这类情况时&#xff0c;会抛出一个异常对象&#…...

Mac 安装依赖后依旧报错 ModuleNotFoundError: No module named ‘Crypto‘

ModuleNotFoundError: No module named ‘Crypto’ 解决办法 pip uninstall pycryptodome pip uninstall pycrypto pip uninstall crypto pip install pycrypto...

【07】持久化-数据库选择和设计

1. 数据库选择 在比特币原始论文中,并没有提到要使用哪一个具体的数据库,它完全取决于开发者如何选择。Bitcoin Core ,最初由中本聪发布,现在是比特币的一个参考实现,它使用的是 LevelDB。 我们将要使用的是BoltDB。Bolt DB是一个纯键值存储的 Go 数据库。没有具体的数据…...

压力测试

1.什么是压力测试 压力测试考察当前软硬件环境下系统所能承受的最大负荷并帮助找出系统瓶颈所在。压测都是为了系统在线上的处理能力和稳定性维持在一个标准范围内&#xff0c;做到心中有数 使用压力测试&#xff0c;我们有希望找到很多种用其他测试方法更难发现的错误&#…...

C语言| 数组元素的删除

同数组元素的插入差不多。 数组元素的插入&#xff0c;是先移动要插入元素位置后面的所有元素&#xff0c;再插入新元素&#xff0c;长度1。 C语言| 数组的插入-CSDN博客 数组元素的删除&#xff0c;是先删除元素&#xff0c;再把后面的元素往前移动一位&#xff0c;而本程序…...

QListView、QTableView或QTreeView截取滚动区域(截长图)

本文以QTreeView为例,理论上继承自QAbstractScrollArea的类都支持本文所述的方法。 一.效果 一共5个文件夹,每个文件文件夹下有5个文件,先把文件夹展开,然后截图。将滚动条拖到居中位置,是为了证明截图对滚动条无影响 下面是截的图 二.原理 将滚动区域的viewport设置为…...

论文《Tree Decomposed Graph Neural Network》笔记

【TDGNN】本文提出了一种树分解方法来解决不同层邻域之间的特征平滑问题&#xff0c;增加了网络层配置的灵活性。通过图扩散过程表征了多跳依赖性&#xff08;multi-hop dependency&#xff09;&#xff0c;构建了TDGNN模型&#xff0c;该模型可以灵活地结合大感受场的信息&…...

控制下属很简单,用好这3大管人绝招,再跳的刺头也不敢造次

控制下属很简单&#xff0c;用好这3大管人绝招&#xff0c;再跳的刺头也不敢造次 第一招&#xff1a;给压力 很多团队中的员工都是自己不带脑子工作&#xff0c;遇事就喜欢请示领导&#xff0c;让领导拿方案、拿决策。 还有一些人&#xff0c;推一下&#xff0c;他才动一下&a…...

2.APP测试-安卓adb抓取日志

1.打开手机的开发者模式&#xff0c;打开USB调试 &#xff08;1&#xff09;小米手机打开开发者模式&#xff1a; 【设置】-【我的设备】-【全部参数信息】-快速多次点击【OS版本】-进入开发者模式 &#xff08;2&#xff09;连接手机和电脑&#xff0c;手机打开USB调试 【设置…...

高考填报志愿选专业,要善于发掘自身优势

每年的高考季&#xff0c;如何填报志愿又再成为困扰家长以及学生的难题&#xff0c;可能在面对大量的专业时&#xff0c;无论是考生还是家长都不知道应该如何选择&#xff0c;好的专业孩子不一定有优势&#xff0c;感兴趣的冷门专业又担心日后找工作难。 实际上&#xff0c;专业…...

如何在 Ubuntu 14.04 上使用 HAProxy 实现 SSL 终止

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 简介 HAProxy&#xff0c;全称高可用代理&#xff0c;是一款流行的开源软件 TCP/HTTP 负载均衡器和代理解决方案&#xff0c;可在 Linu…...

dockercompose

安装dockerconpose #上传docker-compose安装包 chmod x docker-compose mv docker-compose /usr/bin/ [rootlocalhost ~]# docker-compose --version docker-compose version 1.24.1, build 4667896b文件格式以及编写注意事项 YAML 是一种标记语言&#xff0c;它可以很直观的…...

「51媒体」活动会议,展览展会,直播曝光的一种方法

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 我们在做活动会议&#xff0c;或者参加展览展会&#xff0c;需要进行直播的时候&#xff0c;可以通过一键同步多个媒体平台的方法&#xff0c;来扩大曝光&#xff0c;比如一场直播我们可…...

Go WebSocket入门+千万级别弹幕系统架构设计

Go实现WebSocket&#xff08;千万级别弹幕系统架构设计&#xff09; 1 websocket简介(基于HTTP协议的长连接) 使用WebSocket可以轻松的维持服务器端长连接&#xff0c;其次WebSocket是架构在HTTP协议之上的&#xff0c;并且也可以使用HTTPS方式&#xff0c;因此WebSocket是可靠…...

uniapp使用伪元素实现气泡

uniapp使用伪元素实现气泡 背景实现思路代码实现尾巴 背景 气泡效果在开发中使用是非常常见的&#xff0c;使用场景有提示框&#xff0c;对话框等等&#xff0c;今天我们使用css来实现气泡效果。老规矩&#xff0c;先看下效果图&#xff1a; 实现思路 其实实现这个气泡框的…...

字节跳动:从梦想之芽到参天大树

字节跳动掌舵人&#xff1a;张一鸣 2012年&#xff1a;梦想的起点&#xff1a;在一个阳光明媚的早晨&#xff0c;北京的一座普通公寓里&#xff0c;一位名叫张一鸣的年轻人坐在电脑前&#xff0c;眼中闪烁着坚定的光芒。他的心中有一个梦想——通过技术改变世界&#xff0c;让…...

组合数学、圆排列、离散数学多重集合笔记

自用 如果能帮到您&#xff0c;那也值得高兴 知识点 离散数学经典题目 多重集合组合 补充容斥原理公式 隔板法题目 全排列题目&#xff1a;...

网络技术原理需要解决的5个问题

解决世界上任意两台设备时如何通讯的&#xff1f;&#xff1f; 第一个问题&#xff0c;pc1和pc3是怎么通讯的&#xff1f; 这俩属于同一个网段&#xff0c;那么同网段的是怎么通讯的&#xff1f; pc1和pc2属于不同的网段&#xff0c;第二个问题&#xff0c;不同网段的设备是…...

【数据结构】链表的大概认识及单链表的实现

目录 一、链表的概念及结构 二、链表的分类 三、单链表的实现 建立链表的节点&#xff1a; 尾插——尾删&#xff1a; 头插——头删&#xff1a; 查找&#xff1a; 指定位置之后删除——插入&#xff1a; 指定位置之前插入——删除指定位置&#xff1a; 销毁链表&am…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

ZYNQ学习记录FPGA(一)ZYNQ简介

一、知识准备 1.一些术语,缩写和概念&#xff1a; 1&#xff09;ZYNQ全称&#xff1a;ZYNQ7000 All Pgrammable SoC 2&#xff09;SoC:system on chips(片上系统)&#xff0c;对比集成电路的SoB&#xff08;system on board&#xff09; 3&#xff09;ARM&#xff1a;处理器…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...