Go WebSocket入门+千万级别弹幕系统架构设计
Go实现WebSocket(千万级别弹幕系统架构设计)
1 websocket简介(基于HTTP协议的长连接)
使用WebSocket可以轻松的维持服务器端长连接,其次WebSocket是架构在HTTP协议之上的,并且也可以使用HTTPS方式,因此WebSocket是可靠传输,并且不需要开发者关注底层细节。
- websocket具体细节:
①Upgrade:浏览器告知服务器升级为WebSocket协议
②Switch:服务器升级成功后会返回101状态码
③Communicate:浏览器和服务器就可以以WebSocket格式发送数据
- 还有一种推送数据的方式是SSE:
①SSE(Server Send Event):服务器单项推送消息,text/event-stream,它是一种流,可以返回多次数据
②使用场景:CI/CD,ChatGPT回答问题
详细文章:推送数据— —WebSocket与SSE
2 弹幕业务的技术选择(推、拉模式)
2.1 客户端拉(服务器压力过大,类似DDoS)
如果是客户端拉取服务器端数据,那么将会存在以下几个问题:
- 直播在线人数多就意味着消息数据更新频率高,拉取消息意味着弹幕无法满足时效性
- 如果很多客户端同时拉取,那么服务器端的压力无异于DDOS
- 一个弹幕系统应该是通用的,因此对于直播间弹幕较少的场景,意味着消息数据拉取请求都是无效的
2.2 服务端推(服务端需要维护大量长连接)
推送模式:当数据发生更新的时候服务器端主动推送到客户端,这样可以有效减少客户端的请求次数。
- 如果需要实现消息推送,那么就意味着服务器端维护大量的长连接。
3 技术实现(go)
🎆完整代码:
- go实现websocket:
https://github.com/ziyifast/ziyifast-code_instruction/tree/main/go-demo/go-websocket/1-simple
- go实现简易弹幕系统:
https://github.com/ziyifast/ziyifast-code_instruction/tree/main/go-demo/go-websocket/2-boardcast
其他教程:Java实现简易聊天室
3.1 前端页面
index.html:
<!DOCTYPE html>
<html>
<head><title>go websocket</title><meta charset="utf-8"/>
</head>
<body>
<script type="text/javascript">var wsUri = "ws://127.0.0.1:7777/ws";var output;function init() {output = document.getElementById("output");testWebSocket();}function testWebSocket() {websocket = new WebSocket(wsUri);websocket.onopen = function (evt) {onOpen(evt)};websocket.onclose = function (evt) {onClose(evt)};websocket.onmessage = function (evt) {onMessage(evt)};websocket.onerror = function (evt) {onError(evt)};}function onOpen(evt) {// writeToScreen("CONNECTED");// doSend("WebSocket rocks");}function onClose(evt) {writeToScreen("DISCONNECTED");}function onMessage(evt) {var message = evt.data;if (message.startsWith("CONNECTED ")) {var connectionId = message.substring("CONNECTED ".length);writeToScreen("CONNECTED: " + connectionId);} else {writeToScreen('<span style="color: blue;">RESPONSE: ' + message + '</span>');}}// function onMessage(evt) {// writeToScreen('<span style="color: blue;">RESPONSE: '+ evt.data+'</span>');// // websocket.close();// }function onError(evt) {writeToScreen('<span style="color: red;">ERROR:</span> ' + evt.data);}function doSend(message) {// writeToScreen("SENT: " + message);websocket.send(message);}function writeToScreen(message) {var pre = document.createElement("p");pre.style.wordWrap = "break-word";pre.innerHTML = message;output.appendChild(pre);}window.addEventListener("load", init, false);function sendBtnClick() {var msg = document.getElementById("input").value;doSend(msg);document.getElementById("input").value = '';}function closeBtnClick() {websocket.close();}
</script>
<h2>WebSocket Test</h2>
<input type="text" id="input"></input>
<button onclick="sendBtnClick()">send</button>
<button onclick="closeBtnClick()">close</button>
<div id="output"></div></body>
</html>
3.2 go-websocket实现
1. model/connection.go:封装websocket连接
整体思路:
1. 封装websocket连接为connection
①维护连接的读写channel
②分别启两个协程for循环,一个用于读,一个用于写
//中间多了一层Channel,保证了线程安全
readLoop -> inChannel -> c.ReadMessage拿到data -> c.WriteMessage(data) -> outChannel -> writeLoop从outChannel中拿到data写回同样的数据到对端
2. conn_mgr:实现connection的管理,一旦有消息发送过来,便广播给其他连接,实现弹幕效果
package modelimport ("errors""github.com/google/uuid""github.com/gorilla/websocket""sync"
)/*整体思路:1. 维护连接的读写channel2. 分别启两个协程for循环,一个用于读,一个用于写//中间多了一层Channel,保证了线程安全readLoop -> inChannel -> c.ReadMessage拿到data -> c.WriteMessage(data) -> outChannel -> writeLoop
*/type Connection struct {ConnID stringConn *websocket.Conn// 读消息队列inChannel chan []byte//写消息队列outChannel chan []byte// 监听Channel是否关闭closeChan chan byte// 标识isClosed boollock sync.Mutex
}// InitConnection 初始化封装的conn
func InitConnection(conn *websocket.Conn) (c *Connection, err error) {connId, err := uuid.NewUUID()if err != nil {return nil, err}c = &Connection{ConnID: connId.String(),Conn: conn,inChannel: make(chan []byte, 1000),outChannel: make(chan []byte, 1000),closeChan: make(chan byte),isClosed: false,}//启动协程读取消息go c.readLoop()go c.writeLoop()return c, nil
}// ReadMessage 读取消息,从inChannel中读取数据(channel保证线程安全,阻塞读取)
func (c *Connection) ReadMessage() (data []byte, err error) {//从inChannel读取数据for {select {case data = <-c.inChannel:return data, nil//监听连接关闭信号,避免一直阻塞读取数据case <-c.closeChan:return nil, errors.New("conn is closed")}}
}// WriteMessage 写消息,将数据写入outChannel(channel保证线程安全,等待write loop从outChannel中获取数据写回连接)
func (c *Connection) WriteMessage(data []byte) (err error) {for {select {case c.outChannel <- data:return nilcase <-c.closeChan:return errors.New("conn is closed")}}
}// 从连接中不断读取数据写入inChannel
func (c *Connection) readLoop() {var (data []byteerr error)for {if _, data, err = c.Conn.ReadMessage(); err != nil {//读取数据失败,关闭连接c.Close()return}select {//读取到数据写到inChannelcase c.inChannel <- data:case <-c.closeChan:c.Close()}}
}// 从outChannel中不断读取数据并发送数据写回对端
func (c *Connection) writeLoop() {var (data []byteerr error)for {select {case data = <-c.outChannel:if err = c.Conn.WriteMessage(websocket.TextMessage, data); err != nil {c.Close()return}case <-c.closeChan:c.Close()return}}
}func (c *Connection) Close() {c.Conn.Close()c.lock.Lock()if !c.isClosed {close(c.closeChan)c.isClosed = true}WebSocketMgr.RemoveConnection(c)c.lock.Unlock()
}
2. model/conn_mgr.go
package modelimport ("fmt""sync"
)type connectionMgr struct {connections map[string]*Connectionlock sync.RWMutex
}var WebSocketMgr = &connectionMgr{connections: make(map[string]*Connection),lock: sync.RWMutex{},
}func (cm *connectionMgr) AddConnection(conn *Connection) {cm.lock.Lock()defer cm.lock.Unlock()cm.connections[conn.ConnID] = connfmt.Printf("connection %s added\n", conn.ConnID)return
}func (cm *connectionMgr) RemoveConnection(conn *Connection) {cm.lock.Lock()defer cm.lock.Unlock()delete(cm.connections, conn.ConnID)fmt.Printf("connection %s removed\n", conn.ConnID)return
}func (cm *connectionMgr) GetConnection(connID string) (conn *Connection, err error) {cm.lock.RLock()defer cm.lock.RUnlock()conn, ok := cm.connections[connID]if !ok {err = fmt.Errorf("connection not found")return}return
}func (cm *connectionMgr) Boardcast(data []byte) {cm.lock.RLock()defer cm.lock.RUnlock()for _, conn := range cm.connections {if err := conn.WriteMessage(data); err != nil {//if err := conn.WriteMessage([]byte(fmt.Sprintf("[%s] %s", conn.ConnID, string(data)))); err != nil {//TODO 补救或者日志记录,或者忽略return}}
}
3. main.go
package mainimport ("github.com/gorilla/websocket""log""myTest/demo_home/go-demo/go-websocket/2-boardcast/model""net/http"
)var (upgrader = websocket.Upgrader{//允许跨域CheckOrigin: func(r *http.Request) bool {return true}}
)func main() {//模拟简易弹幕系统,注意:为了逻辑简洁,并没有做过多的封装,部分代码设计以及安全监测并不合理http.HandleFunc("/ws", wsHandler)http.ListenAndServe(":7777", nil)
}func wsHandler(w http.ResponseWriter, r *http.Request) {var (conn *websocket.Connconnection *model.Connectionerr errordata []byte)if conn, err = upgrader.Upgrade(w, r, nil); err != nil {return}//初始化连接if connection, err = model.InitConnection(conn); err != nil {return}//注册连接model.WebSocketMgr.AddConnection(connection)// 发送连接ID给前端if err := conn.WriteMessage(websocket.TextMessage, []byte("CONNECTED "+connection.ConnID)); err != nil {log.Println("Error sending connection ID:", err)return}go func(c *model.Connection) {for {if data, err = connection.ReadMessage(); err != nil {return}//广播消息model.WebSocketMgr.Boardcast(data)}}(connection)
}
3.3 效果
1. 启动websocket服务端
2. 分别用chrome、Firefox、edge打开页面,建立websocket连接
CONNECTIONID用于标识不同的websocket长连接
- chrome
- Firefox
- edge
3. 不同浏览器相当于不同用户,chrome用户发起一个弹幕,点击send发送弹幕
4. 观察其他用户是否接受到弹幕
自己也会收到自己发的弹幕:
5. edge、firefox用户分别发一个弹幕,观察效果
模拟其他用户发送弹幕
6. chrome退出直播间,其他用户发送弹幕,它接受不到
chrome用户退出直播间,edge、firefox发送弹幕,chrome用户应该接受不到
edge、firefox用户发送弹幕:
后端系统日志:
4 千万级别弹幕系统设计
4.1 难点(内核、锁、CPU瓶颈)
- 内核瓶颈:
- 推送量大:100w在线用户*10条/s = 1000w条/s
- linux内核发送TCP的极限包频约为100w条/s
- 锁瓶颈:
- 推模式需要维护一个存储了100w条数据的集合,比如map
- 推送消息遍历整个集合,顺序发送消息,耗时极长
- 推送期间,客户端仍可以正常上/下线,所以集合需要加锁
- CPU瓶颈
- 浏览器与服务端采用json格式通讯
- json编码非常耗cpu
- 向100w在线用户推送1次,就需要100w次的json encode
4.2 解决方案(多小包合为一个大包)
- 内核瓶颈:
- 减少网络小包的发送
- 将同一秒内的N条消息合并为1条,合并后每秒推送次数只等于在线连接数
- 锁瓶颈:
- 将连接分散到多个集合中,每个集合都有自己的锁
- 多线程并发推送多个集合,避免锁竞争
- 读写锁取代互斥锁,多个推送任务可以遍历相同集合
- cpu瓶颈:
- 减少重复计算,json编码前置:1次消息编码+100w次推送
4.3 分布式架构
如果是单机架构的话:
- 维护海量的连接必然会耗费很多内存
- 消息推送的瞬间也会消耗大量CPU资源
- 消息推送瞬间带宽可能高达400-600MB,4-6Gbits(主要瓶颈,即需要万兆网卡)
因此我们需要分布式架构:
- 网关集群:维护websocket长连接
- 逻辑集群:基于HTTP/2向gateway网关集群分发消息(rpc),与其他服务的交互等
- 业务方
业务方->逻辑集群->网关集群
参考:https://learnku.com/articles/48418
相关文章:

Go WebSocket入门+千万级别弹幕系统架构设计
Go实现WebSocket(千万级别弹幕系统架构设计) 1 websocket简介(基于HTTP协议的长连接) 使用WebSocket可以轻松的维持服务器端长连接,其次WebSocket是架构在HTTP协议之上的,并且也可以使用HTTPS方式,因此WebSocket是可靠…...

uniapp使用伪元素实现气泡
uniapp使用伪元素实现气泡 背景实现思路代码实现尾巴 背景 气泡效果在开发中使用是非常常见的,使用场景有提示框,对话框等等,今天我们使用css来实现气泡效果。老规矩,先看下效果图: 实现思路 其实实现这个气泡框的…...

字节跳动:从梦想之芽到参天大树
字节跳动掌舵人:张一鸣 2012年:梦想的起点:在一个阳光明媚的早晨,北京的一座普通公寓里,一位名叫张一鸣的年轻人坐在电脑前,眼中闪烁着坚定的光芒。他的心中有一个梦想——通过技术改变世界,让…...

组合数学、圆排列、离散数学多重集合笔记
自用 如果能帮到您,那也值得高兴 知识点 离散数学经典题目 多重集合组合 补充容斥原理公式 隔板法题目 全排列题目:...

网络技术原理需要解决的5个问题
解决世界上任意两台设备时如何通讯的?? 第一个问题,pc1和pc3是怎么通讯的? 这俩属于同一个网段,那么同网段的是怎么通讯的? pc1和pc2属于不同的网段,第二个问题,不同网段的设备是…...

【数据结构】链表的大概认识及单链表的实现
目录 一、链表的概念及结构 二、链表的分类 三、单链表的实现 建立链表的节点: 尾插——尾删: 头插——头删: 查找: 指定位置之后删除——插入: 指定位置之前插入——删除指定位置: 销毁链表&am…...

国企:2024年6月中国移动相关招聘信息 二
在线营销服务中心-中国移动通信有限公司在线营销服务中心 硬件工程师 工作地点:河南省-郑州市 发布时间 :2024-06-18 截至时间: 2024-06-30 学历要求:本科及以上 招聘人数:1人 工作经验:3年 岗位描述 1.负责公司拾音器等音视频智能硬件产品全过程管理,包括但…...

Elasticsearch:智能 RAG,获取周围分块(二)
在之前的文章 “Elasticsearch:智能 RAG,获取周围分块(一) ” 里,它介绍了如何实现智能 RAG,获取周围分块。在那个文章里有一个 notebook。为了方便在本地部署的开发者能够顺利的运行那里的 notebook。在本…...

华为---RIP路由协议的汇总
8.3 RIP路由协议的汇总 8.3.1 原理概述 当网络中路由器的路由条目非常多时,可以通过路由汇总(又称路由汇聚或路由聚合)来减少路由条目数,加快路由收敛时间和增强网络稳定性。路由汇总的原理是,同一个自然网段内的不同子网的路由在向外(其他…...

Python基础——字符串常见用法:切片、去空格、替换、拼接
文章目录 专栏导读1、拼接字符串2、获取字符串长度3、字符串切片4、字符串替换:5、字符串分割6、字符串查找7、字符串大小写转换8、字符串去除空白9、字符串格式化:10、字符串编码与解码:11、字符串判断12、字符串填充与对齐总结 专栏导读 &a…...

LeetCode.51N皇后详解
问题描述 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案…...

计算机网络之奇偶校验码和CRC冗余校验码
今天我们来看看有关于计算机网络的知识——奇偶校验码和CRC冗余校验码,这两种检测编码的方式相信大家在计算机组成原理当中也有所耳闻,所以今天我就来跟大家分享有关他们的知识。 奇偶校验码 奇偶校验码是通过增加冗余位使得码字中1的个数恒为奇数或偶数…...

二叉树经典OJ练习
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 二叉树经典OJ练习 收录于专栏【数据结构初阶】 本专栏旨在分享学习数据结构学习的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 前置说…...

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】008 - make distclean 命令解析
【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】008 - make distclean 命令解析 一、make V=1 distclean 命令解析系列文章汇总:《【OpenHarmony4.1 之 U-Boot 源码深度解析】000 - 文章链接汇总》 本文链接:《【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】008 - mak…...

QTreeView双击任意列展开
一.效果 二.原理 重点是如何通过其他列的QModelIndex(假设为index),获取第一列的QModelIndex(假设为firstColumnIndex)。代码如下所示: QModelIndex firstColumnIndex = model->index(index.row(), 0, index.parent()); 这里要注意index函数的第三个参数,第三个参…...

Linux入门攻坚——26、Web Service基础知识与httpd配置-2
http协议 URL:Uniform Resource Locator,统一资源定位符 URL方案:scheme,如http://,https:// 服务器地址:IP:port 资源路径: 示例:http://www.test.com:80/bbs/…...

相由心生与事出反常必有妖
从端午节之日生病起,已就医三次,快半个月了。医检的结论是老病复发—— 上呼吸道感染 。原本并无大碍,加之“水不在深,有龙则灵”的张龙医生处方得当,现已病情好转。只是“800727”趁人之危,兴灾乐祸地欲从…...

微信小程序---支付
一、判断是否登录 如果没有登录,走前端登录流程,不再赘述 二、获取订单编号 跟自己的后端商议入参,然后获取订单编号 三、通过订单编号获取wx.requestPayment()需要的参数 获取订单编号再次请求后端接口,拿到wx.requestPayme…...

Git学习2 -- VSCode中的Git
看了下,主要的插件有3个。自带的Source Control。第1个是Gitlens,第2个是Git Graph。第三个还有个git history。 首先是Source Control。界面大概是这样的。 还是挺直观的。在第一栏source control,可以进行基本的git操作。主要的git操作都是…...

VC++支持断点续下或续传的功能
VC使用多线程和Socket实现断点续下 一、断点续下的基本原理: 1.断点续传的理解可以分为两部分:一部分是断点,一部分是续传。断点的由来是在下载过程中,将一个下载文件分成了多个部分,同时进行多个部分一起的下载&…...
机器学习数学原理专题——线性分类模型:损失函数推导新视角——交叉熵
目录 二、从回归到线性分类模型:分类 3.分类模型损失函数推导——极大似然估计法 (1)二分类损失函数——极大似然估计 (2)多分类损失函数——极大似然估计 4.模型损失函数推导新视角——交叉熵 (1&#x…...

windows和linux路径斜杆转换脚本,打开即用
前言: windows和linux的目录路径斜杆是相反的,在ssh或者其他什么工具在win和ubuntu传文件时候经常需要用到两边的路径,有这个工具就不用手动去修改斜杆反斜杠了。之前有个在线网站,后来挂了,就想着自己搞一个脚本来用。…...

在Android系统中,查看apk安装路径
在Android系统中,应用通常安装在内部存储的特定目录下。要找到已安装应用的路径,可以通过ADB(Android Debug Bridge)工具来查询。以下是一些步骤和命令,可以帮助你找到应用的安装路径: 使用pm list package…...

管理不到位,活该执行力差?狠抓这4点要素,强化执行力
管理不到位,活该执行力差?狠抓这4点要素,强化执行力 一:强化制度管理 1、权责分明,追责管理 要知道,规章制度其实就是一种“契约”。 在制定制度和规则的时候,民主一点,征求团队成员…...

应届毕业之本科简历制作
因为毕设以及编制岗位面试,最近好久没有更新了,刚好有同学问如何制作简历,我就准备将我自己制作简历的流程分享给各位,到此也算是一个小的结束,拿了工科学位证书毕业去做🐂🐎了。 简历主要包含内…...

SparkOnHive_列转行、行转列生产操作(透视和逆透视)
前言 行专列,列转行是数开不可避免的一步,尤其是在最初接触Hive的时候,看到什么炸裂函数,各种udf,有点发憷,无从下手,时常产生这t怎么搞,我不会啊? 好吧ÿ…...

【人机交互 复习】第2章 Hadoop
一、概念 1.Hadoop 是一个能够对大量数据进行分布式处理的软件框架,并 且是以一种可靠、高效、可伸缩的方式进行处理的, 2.特点: 高可靠性,高效性,高可扩展性,高容错性 运行在Linux平台上,支持…...

国产自研编程语言“仓颉”来了!
在 6.21 召开的华为开发者大会(HDC2024)上,华为自研的国产编程语言“仓颉”终于对外正式发布了! 随着万物互联以及智能时代的到来,软件的形态将发生巨大的变化。一方面,移动应用和移动互联网领域仍然强力驱动人机交互…...

Swarm 集群管理
Swarm 集群管理 简介 Docker Swarm 是 Docker 的集群管理工具。它将 Docker 主机池转变为单个虚拟 Docker 主机。 Docker Swarm 提供了标准的 Docker API,所有任何已经与 Docker 守护程序通信的工具都可以使用 Swarm 轻松地扩展到多个主机。 支持的工具包括但不限…...

从社交网络到元宇宙:Facebook的战略转型
随着科技的迅猛发展和数字化时代的深入,社交网络已不再局限于简单的信息交流和社交互动,而是逐步向更广阔、更深远的虚拟现实空间——元宇宙(Metaverse)转变。作为全球最大的社交网络平台之一,Facebook正在积极推动这一…...