Stable Diffusion部署教程,开启你的AI绘图之路
本文环境
系统:Ubuntu 20.04 64位
内存:32G
环境安装
2.1 安装GPU驱动
在英伟达官网根据显卡型号、操作系统、CUDA等查询驱动版本。官网查询链接https://www.nvidia.com/Download/index.aspx?lang=en-us
注意这里的CUDA版本,如未安装CUDA可以先选择一个版本,稍后再安装CUDA.
点击Search
如上图,查询到合适的版本为510. 然后可以使用apt安装对应驱动版本,使用apt安装更方便一些。
# 安装510版本驱动
sudo apt install nvidia-driver-510
# 查看驱动信息
nvidia-smi
当然你也可以使用官网下载的run文件进行安装
sudo chmod +x NVIDIA-Linux-x86_64-510.108.03.run
安装
sudo ./NVIDIA-Linux-x86_64-510.108.03.run
安装步骤操作之后就可以完成安装了
输入nvidia-smi查看显卡
chen@chen:~$ nvidia-smi
Sat Jun 22 08:50:27 2024
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.39.01 Driver Version: 510.39.01 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla M40 On | 00000000:01:00.0 Off | 0 |
| N/A 53C P8 17W / 250W | 3MiB / 11520MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
安装CUDA
访问英伟达开发者网站先选择CUDA版本(版本要对应2.1中GPU驱动支持的CUDA版本),再根据操作系统选择对应CUDA安装命令,访问链接https://developer.nvidia.com/cuda-toolkit-archive
如上面安装确定所选择驱动对应的CUDA版本为11.6,根据安装命令安装, 以下命令适用Ubuntu 20.04 x86_64, GPU驱动510版本
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-6-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda
2.3 安装Python 3.10
Stable Diffusion WebUI目前最低支持Python 3.10,所以直接安装3.10版本,安装命令:
apt install software-properties-commonadd-apt-repository ppa:deadsnakes/ppaapt updateapt install python3.10python3.10 --verison
PIP设置国内源,由于默认源在国外,所以安装可能经常会出现timeout等问题,使用国内源可以很大程度避免下载包timeout的情况。将如下内容复制到文件~/.pip/pip.conf
当中,如没有该文件,先创建touch ~/.pip/pip.conf
。
[global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple[install]trusted-host = https://pypi.tuna.tsinghua.edu.cn
但是有一种比较推荐的方法就是使用 Anaconda
安装Anaconda
非常推荐使用Anaconda。Anaconda可以便捷获取包且对包能够进行管理,同时对Python环境可以统一管理的发行版本。安装命令也很简单:
wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.shbash ./Anaconda3-5.3.1-Linux-x86_64.sh
安装步骤安装Anaconda,最后一部选择是否要安装vscode可以选N
建Python3.10.9环境,并使用该环境
conda create -n python3.10.9 python==3.10.9conda activate python3.10.9
2.5 安装PyTorch
首先在PyTorch官网查询对应CUDA版本的Torch,如上述章节2.2中CUDA 11.6需要安装pytorch1.13.1
# 使用conda安装,两种安装方式二选一
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia# 使用pip安装,两种安装方式二选一
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
我是使用pip安装的
三、部署Stable Diffusion WebUI
3.1 下载stable-diffusion-webui
注意首先激活Python3.10环境:
conda activate python3.10.9
然后下载stable-diffusion-webui
sudo git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
如果遇到项目clone不下来可以使用我下面的加速地址
sudo git clone https://github.moeyy.xyz/https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
安装依赖
cd到stable-diffusion-webui目录安装相应的依赖,如有访问网络超时、失败等,注意按照章节2.3中设置国内源,如果再次失败,重试几次一般都可完成安装。
cd stable-diffusion-webui
pip install -r requirements_versions.txt
pip install -r requirements.txt
启动stable-diffusion-webui
安装完成后,执行如下启动命令:
python launch.py --listen --enable-insecure-extension-access
这一步骤会下载一些常用模型,如果遇到下载失败,根据报错提示在huggingface.co下载模型放到对应目录,如下载stable-diffusion-v1-5模型,搜索找到https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main
每次启动都需要输入一长串命令,比较麻烦,可以写一个shell
sudo vim start.sh
里面输入
sudo /home/chen/anaconda3/envs/python3.10.9/bin/python launch.py --listen --enable-insecure-extension-access
/home/chen是当前我的用户目录,anaconda3创建的虚拟环境是python3.10.9 就写这个python路径anaconda3/envs/python3.10.9
sudo chmod +x start.sh
启动项目
chen@chen:/data/stable-diffusion-webui$ ./start.sh
[sudo] password for chen:
Sorry, try again.
[sudo] password for chen:
Python 3.10.9 (main, Mar 8 2023, 10:47:38) [GCC 11.2.0]
Version: v1.9.4
Commit hash: feee37d75f1b168768014e4634dcb156ee649c05
Launching Web UI with arguments: --listen --enable-insecure-extension-access
no module 'xformers'. Processing without...
No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, you are using PyTorch 1.13.1+cu116. You might want to consider upgrading.
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.
==============================================================================
You are running torch 1.13.1+cu116.
The program is tested to work with torch 2.1.2.
To reinstall the desired version, run with commandline flag --reinstall-torch.
Beware that this will cause a lot of large files to be downloaded, as well as
there are reports of issues with training tab on the latest version.Use --skip-version-check commandline argument to disable this check.
==============================================================================
Loading weights [63d370e256] from /data/stable-diffusion-webui/models/Stable-diffusion/a31_style.safetensors
Running on local URL: http://0.0.0.0:7860To create a public link, set `share=True` in `launch()`.
Startup time: 14.5s (prepare environment: 2.3s, import torch: 4.9s, import gradio: 1.3s, setup paths: 1.3s, initialize shared: 0.3s, other imports: 1.3s, list SD models: 0.2s, load scripts: 1.5s, create ui: 0.8s, gradio launch: 0.6s).
Creating model from config: /data/stable-diffusion-webui/configs/v1-inference.yaml
/home/chen/anaconda3/envs/python3.10.9/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.warnings.warn(
访问服务器ip:7860
随便画一张图试试
相关文章:

Stable Diffusion部署教程,开启你的AI绘图之路
本文环境 系统:Ubuntu 20.04 64位 内存:32G 环境安装 2.1 安装GPU驱动 在英伟达官网根据显卡型号、操作系统、CUDA等查询驱动版本。官网查询链接https://www.nvidia.com/Download/index.aspx?langen-us 注意这里的CUDA版本,如未安装CUD…...

三生随记——诡异的牙线
在小镇的角落,坐落着一间古老的牙医诊所。这所诊所早已荒废多年,窗户上爬满了藤蔓,门板上的油漆斑驳脱落,仿佛诉说着无尽的沉寂与孤独。然而,在午夜时分,偶尔会有低沉的呻吟声从紧闭的诊所里传出࿰…...

批量重命名神器揭秘:一键实现文件夹随机命名,自定义长度轻松搞定!
在数字化时代,我们经常需要管理大量的文件夹,尤其是对于那些需要频繁更改或整理的文件来说,给它们进行批量重命名可以大大提高工作效率。然而,传统的重命名方法既繁琐又耗时,无法满足高效工作的需求。今天,…...

学习笔记——路由网络基础——路由转发
六、路由转发 1、最长匹配原则 最长匹配原则 是支持IP路由的设备默认的路由查找方式(事实上几乎所有支持IP路由的设备都是这种查找方式)。当路由器收到一个IP数据包时,会将数据包的目的IP地址与自己本地路由表中的表项进行逐位(Bit-By-Bit)的逐位查找,…...

Python网络安全项目开发实战,如何防命令注入
注意:本文的下载教程,与以下文章的思路有相同点,也有不同点,最终目标只是让读者从多维度去熟练掌握本知识点。 下载教程: Python网络安全项目开发实战_防命令注入_编程案例解析实例详解课程教程.pdf 在Python网络安全项目开发中,防止命令注入(Command Injection)是一项…...

程序员如何高效读代码?
程序员高效读代码的技巧包括以下几点: 明确阅读目的:在开始阅读代码之前,先明确你的阅读目的。是为了理解整个系统的架构?还是为了修复一个具体的bug?或者是为了了解某个功能是如何实现的?明确目的可以帮助…...

全面分析一下前端框架Angular的来龙去脉,分析angular的技术要点和难点,以及详细的语法和使用规则,底层原理-小白进阶之路
Angular 前端框架全面分析 Angular 是一个由 Google 维护的开源前端框架。它最早在 2010 年发布,最初版本称为 AngularJS。2016 年,团队发布了一个完全重写的版本,称为 Angular 2,之后的版本(如 Angular 4、Angular 5…...

VACUUM 剖析
VACUUM 剖析 为什么需要 Vacuum MVCC MVCC:Multi-Version Concurrency Control,即多版本并发控制。 PostgreSQL 使用多版本并发控制(MVCC)来支持高并发的事务处理,同时保持数据的一致性和隔离性。MVCC 是一种用于管…...

基于LangChain框架搭建知识库
基于LangChain框架搭建知识库 说明流程1.数据加载2.数据清洗3.数据切分4.获取向量5.向量库保存到本地6.向量搜索7.汇总调用 说明 本文使用openai提供的embedding模型作为框架基础模型,知识库的搭建目的就是为了让大模型减少幻觉出现,实现起来也很简单&a…...

LeetCode 1789, 6, 138
目录 1789. 员工的直属部门题目链接表要求知识点思路代码 6. Z 字形变换题目链接标签思路代码 138. 随机链表的复制题目链接标签思路代码 1789. 员工的直属部门 题目链接 1789. 员工的直属部门 表 表Employee的字段为employee_id,department_id和primary_flag。…...

Redis部署模式全解析:单点、主从、哨兵与集群
Redis是一个高性能的键值存储系统,以其丰富的数据结构和优异的读写性能而闻名。在实际应用中,根据业务需求的不同,Redis可以部署在多种模式下。本文将详细介绍Redis的四种主要部署模式:单点模式、主从复制模式、哨兵模式以及集群模…...

python-docx顺序读取word内容
来源How to use Python iteration to read paragraphs, tables and pictures in word? Issue #650 python-openxml/python-docx (github.com) from docx import Document from docx.oxml.ns import qndef iter_block_items(parent):"""生成 paren…...

kafka 集群原理设计和实现概述(一)
kafka 集群原理设计和实现概述(一) Kafka 集群的设计原理是为了实现高可用性、高吞吐量、容错性和可扩展性。以下是 Kafka 集群的设计原 理及其实现方法: 1. 分布式架构设计 Kafka 采用分布式架构,集群中的多个 Broker 共同工作,负责接收、存储和传递消息。通过将数据分布…...

three.js 第十一节 - uv坐标
// ts-nocheck // 引入three.js import * as THREE from three // 导入轨道控制器 import { OrbitControls } from three/examples/jsm/controls/OrbitControls // 导入lil.gui import { GUI } from three/examples/jsm/libs/lil-gui.module.min.js // 导入tween import * as T…...

git从master分支创建分支
1. 切换到主分支或你想从哪里创建新分支 git checkout master 2. 创建并切换到新的本地分支 develop git checkout -b develop 3. 将新分支推送到远程存储库 git push origin develop 4. 设置本地 develop 分支跟踪远程 develop 分支 git branch --set-upstream-toorigi…...

Chromium 调试指南2024 Mac篇 - 准备工作 (一)
1.引言 Chromium是一个由Google主导开发的开源浏览器项目,它为Google Chrome浏览器提供了基础框架。Chromium不仅是研究和开发现代浏览器技术的重要平台,还为众多其他基于Chromium的浏览器(如Microsoft Edge、Brave等)提供了基础…...

vue登陆密码加密,java后端解密
前端 安装crypto-js npm install crypto-js加密 //引入crypto-js import CryptoJS from crypto-js;/** ---密码加密 start--- */ const SECRET_KEY CryptoJS.enc.Utf8.parse("a15q8f6s5s1a2v3s"); const SECRET_IV CryptoJS.enc.Utf8.parse("a3c6g5h4v9sss…...

npm 安装踩坑
1 网络正常,但是以前的老项目安装依赖一直卡住无法安装?哪怕切换成淘宝镜像 解决办法:切换成yarn (1) npm i yarn -g(2) yarn init(3) yarn install在安装的过程中发现: [2/4] Fetching packages... error marked11.1.0:…...

内容安全复习 6 - 白帽子安全漏洞挖掘披露的法律风险
文章目录 安全漏洞的法律概念界定安全漏洞特征白帽子安全漏洞挖掘面临的法律风险“白帽子”安全漏洞挖掘的风险根源“白帽子”的主体边界授权行为边界关键结论 安全漏洞的法律概念界定 可以被利用来破坏所在系统的网络或信息安全的缺陷或错误;被利用的网络缺陷、错…...

dp经典问题:爬楼梯
dp经典问题:爬楼梯 爬楼梯 三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。 Step1: 识别问题 这…...

示例:推荐一个基于第三方QRCoder.Xaml封装的二维码显示控件
一、目的:基于第三方QRCoder.Xaml封装的二维码控件,为了方便WPF调用 二、效果如下 功能包括:背景色,前景色,中心图片设置和修改大小,二维码设置等 三、环境 VS2022 四、使用方式 1、安装nuget包…...

阿里云服务器618没想到这么便宜,买早了!
2年前,我买了个服务器,租用服务器(ECS5)和网络宽带(1M),可以说是非常非常低的配置了。 当时5年的折扣力度最大,但是打完折后,价格依然要近3000多元。 最近看到阿里云618活…...

提升Python技能的七个函数式编程技巧
文章目录 📖 介绍 📖🏡 演示环境 🏡📒 文章内容 📒📝 递归📝 结构化模式匹配📝 不变性📝 纯函数📝 高阶函数📝 函数组合📝 惰性求值⚓️ 相关链接 ⚓️📖 介绍 📖 在现代编程中,虽然Python并不是一门纯粹的函数式编程语言,但函数式编程(Funct…...

微型操作系统内核源码详解系列五(五):cm3下Pendsv切换任务上篇
系列一:微型操作系统内核源码详解系列一:rtos内核源码概论篇(以freertos为例)-CSDN博客 系列二:微型操作系统内核源码详解系列二:数据结构和对象篇(以freertos为例)-CSDN博客 系列…...

Django测试平台搭建学习笔记1
一安装 pip离线安装requests2.32.0所需要的依赖: : charset-normalizer<4,>2 (3.0.0b1) : idna<4,>2.5 (3.7) : urllib3<3,>1.21.1 (2.2.0) : certifi>2017.4.17 (2024.6.2) pip离线安装pytest8.2.0所需要的依赖: : iniconfig (2…...

本地离线模型搭建指南-RAG架构实现
搭建一个本地中文大语言模型(LLM)涉及多个关键步骤,从选择模型底座,到运行机器和框架,再到具体的架构实现和训练方式。以下是一个详细的指南,帮助你从零开始构建和运行一个中文大语言模型。 本地离线模型搭…...

【IPython 使用技巧整理】
IPython 使用技巧整理 IPython 是一个交互式 Python 解释器,比标准 Python 解释器提供了更加强大的功能和更友好的使用体验。它为数据科学、机器学习和科学计算提供了强大的工具,是 Python 开发人员不可或缺的工具之一。本文将深入探讨 IPython 的各种使…...
什么是孪生素数猜想
什么是孪生素数猜想 素数p与素数p2有无穷多对 孪生素数的公式(详见百度百科:孪生素数公式) 利用素数的判定法则,可以得到以下的结论:“若自然数q与q2都不能被任何不大于的素数 整除,则q与q 2都是素数”…...

Python学习笔记16:进阶篇(五)异常处理
异常 在编程中,异常是指程序运行过程中发生的意外事件,这些事件通常中断了正常的指令流程。它们可能是由于错误的输入数据、资源不足、非法操作或其他未预料到的情况引起的。Python中,当遇到这类情况时,会抛出一个异常对象&#…...

Mac 安装依赖后依旧报错 ModuleNotFoundError: No module named ‘Crypto‘
ModuleNotFoundError: No module named ‘Crypto’ 解决办法 pip uninstall pycryptodome pip uninstall pycrypto pip uninstall crypto pip install pycrypto...