当前位置: 首页 > news >正文

图像数字化基础

一、像素
1、获取图像指定位置的像素
import cv2
image = cv2.imread("E:\\images\\2.png")
px = image[291,218]
print("坐标(291,218)上的像素的BGR值是:",px)
(1)RGB色彩空间
  • R通道:红色通道

  • G通道:绿色通道

  • B通道:蓝色通道

(2)RGB的表示

通常使用一个三维数组来表示一幅图像中某一个像素的RGB值

(3)RGB图像

RGB图像时指用RGB色彩空间显示的图像,BGR图像是指使用BGR色彩空间显示的图像;RGB色彩空间和

BGR色彩空间的区别是图像在RGB色彩空间中的通道顺序是R->G->B,在BGR的色彩空间中的通道顺序是

B->G-R

2、修改像素的BGR值

对于RGB/BGR图像,当每个像素的R、G、B这3个值相等时,就可以得到灰度图像。其中。

R=G=B=0(B=G=R=0)为纯黑色;R=G=B=255(B=G=R=255)为纯白色

import cv2image = cv2.imread("E:/images/2.png")
cv2.imshow("2",image)for i in range(241,292):for j in range(168,219):image[i,j] = [255,255,255]cv2.imshow("3",image)
cv2.waitKey()
cv2.destroyWindow()
二、色彩空间
1、GRAY色彩空间
  • GRAY色彩空间通常指的是灰度图像,灰度图像是一种每个像素都是从黑到白,被处理为256个灰度级别的单

色图像。这256个灰度级别分别用区间[0,255]中的数值表示。其中“0”表示纯黑色,“255”表示纯白色,0~255之间

的数值表示不同的亮度(即色彩的深浅程度)的深灰色或浅灰色。因此,一幅灰度图像能够展示丰富的细节信息。

  • 从RGB/BGR色彩空间转换到GRAY色彩空间

dst  =  cv2.cvtColor(src,code)dst:转换后的图像src:转换前的初始图像code:色彩空间转换码
色彩空间转换码含义
cv2.COLOR_BGR2GRAY从BGR色彩空间转换到GRAY色彩空间
cv2.COLOR_RGB2GRAY从RGB色彩空间转换到GRAY色彩空间
import cv2image = cv2.imread("E:/images/2.png")
cv2.imshow("2.1",image)#将图像2.png从BGR色彩空间转换到GRAY色彩空间
gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow("GRAY",gray_image)
cv2.waitKey()
cv2.destroyWindow()
2、HSV色彩空间
  • HSV色彩空间是基于色调、饱和度和亮度而言的。其中,色调(H)是指光的颜色。在OpenCV中,色调在区间【0,180】内取值。例如,代表红色、黄色、绿色和蓝色的色调值分别为0、30、60和120

  • 从RGB/BGR色彩空间转换到HSV色彩空间

色彩空间转换码含义
cv2.COLOR_BGR2HSV从BGR色彩空间转换到HSV色彩空间
cv2.COLOR_RGB2HSV从RGB色彩空间转换到HSV色彩空间
import cv2image = cv2.imread("E:/images/2.png")
cv2.imshow("2.1",image)#将图像2.png从BGR色彩空间转换到GRAY色彩空间
hsv_image = cv2.cvtColor(image,cv2.COLOR_BGR2HSV)
cv2.imshow("HSV",hsv_image)
cv2.waitKey()
cv2.destroyWindow()
三、通道
1、拆分通道
  • 拆分一幅BGR图像中的通道
b,g,r = cv2.split(bgr_image)
参数说明:b:B通道图像g:G通道图像r: R通道图像bgr_image:一幅BGR图像 
import cv2bgr_image = cv2.imread("E:/images/2.png")
cv2.imshow("2.1",bgr_image)b,g,r = cv2.split(bgr_image)
cv2.imshow("B",b)
cv2.imshow("G",g)
cv2.imshow("R",r)cv2.waitKey()
cv2.destroyWindow()
  • 拆分一幅HSV图像中的通道
h,s,v = cv2.split(hsv_image)
参数说明:h:H通道图像s:S通道图像v:V通道图像hsv_image:一幅HSV图像 
import cv2bgr_image = cv2.imread("E:/images/avatar.png")
cv2.imshow("2.1",bgr_image)#把图2.1从BGR色彩空间转换到HSV色彩空间
hsv_image = cv2.cvtColor(bgr_image,cv2.COLOR_BGR2HSV)
h,s,v = cv2.split(hsv_image)
cv2.imshow("H",h)
cv2.imshow("S",s)
cv2.imshow("V",v)cv2.waitKey()
cv2.destroyWindow()
2、合并通道

合并通道是拆分通道的逆操作

  • 合并B、G、R通道图像

bgr = cv2.merge([b,g,r])
参数说明:bgr:按B->G->R的顺序合并通道后得到的图像r:R通道图像g:G通道图像b:B通道图像注意:合并通道的顺序不同,图像的显示效果也不同
import cv2bgr_image = cv2.imread("E:/images/avatar.png")
cv2.imshow("2.1",bgr_image)b,g,r = cv2.split(bgr_image) #拆分图2.1中的通道bgr = cv2.merge([b,g,r]) #按B->G->R的顺序合并通道
cv2.imshow("BGR",bgr)rgb = cv2.merge([r,g,b]) #按R->G->B的顺序合并通道
cv2.imshow("RGB",rgb)cv2.waitKey()
cv2.destroyWindow()
  • 合并H、S、V通道图像
hsv = cv2.merge([h,s,v])
参数说明:hsv:合并H通道图像、S通道图像和V通道图像后得到的图像h:H通道图像s:S通道图像v:V通道图像 
import cv2bgr_image = cv2.imread("E:/images/avatar.png")
cv2.imshow("avatar.png",bgr_image)
#把图像avatar.png从RGB色彩空间转换到HSV色彩空间
hsv_image = cv2.cvtColor(bgr_image,cv2.COLOR_BGR2HSV)
h,s,v = cv2.split(hsv_image) #拆分HSV图像中的通道
hsv = cv2.merge([h,s,v]) #合并拆分后的通道图像
cv2.imshow("HSV",hsv) #显示合并通道的HSV图像cv2.waitKey()
cv2.destroyWindow()
3、alpha通道

BGR色彩空间包含3个通道,即B通道、G通道、R通道。OpenCV在这3个通道的基础上增加了一个A通道,即alpha通道,用于设置图像的透明度。alpha通道在区间【0,255】内取值;其中,0表示透明,255表示不透明

import cv2bgr_image = cv2.imread("E:/images/avatar.png")
cv2.imshow("2.1",bgr_image)#把图像2.1从BGR色彩空间转换到BGRA色彩空间
bgra_image = cv2.cvtColor(bgr_image,cv2.COLOR_BGR2BGRA)
cv2.imshow("BGRA",bgra_image) #显示BGRA图像
r,g,b,a = cv2.split(bgra_image)
a[:,:] = 172
bgra_172 = cv2.merge([r,g,b,a])
a[:,:] = 0
bgra_0 = cv2.merge([r,g,b,a])cv2.imshow("A = 172",bgra_172)
cv2.imshow("A = 0",bgra_0)cv2.waitKey()
cv2.destroyWindow()
四、使用NumPy模块操作像素
1、NumPy概述

NumPy提供了一个高性能的数组对象,可以轻松创建一维数组、二维数组和多维数组等大量实用方法,帮助开发者轻松地进行数组计算。从而广泛的应用于数据分析、机器学习、图像处理和计算机图形学、数学任务等领域中

2、创建数组
numpy.array(object,dtype,copy,order,subok,ndmin)
参数说明:object:任何具有数组接口方法的对象dtype:数据类型copy:可选参数,布尔型,默认值为True,则object对象被复制order:元素在内存中的出现顺序subok:布尔型。如果值为True,则将传递子类ndmin:指定生成数组的最小维数 
  • 创建一维和二维数组
import numpy as npn1 = np.array([1,2,3]) #创建一个简单的一维数组
n2 = np.array([0.1,0.2,0.3]) #创建一个包含小数的一维数组
n3 = np.array([[1,2],[3,4]]) #创建一个简单的二维数组
  • 创建浮点型数组
import numpy as nplist = [1,2,3]#创建浮点型数组
n1 = np.array(list,dtype=np.float_)
print(n1)
print(n1.dtype)
print(type(n1[0]))
  • 创建三维数组
import numpy as nplist = [1,2,3]
nd1 = np.array(list,ndmin=3)
print(nd1)
3、操作数组
  • 数组加、减、乘、除
import numpy as npn1 = np.array([1,2])
n2 = np.array([3,4])print(n1 + n2)
print(n1 - n2)
print(n1 * n2)
print(n1 / n2)//输出
[4 6]
[-2 -2]
[3 8]
[0.33333333 0.5       ]
  • 幂运算
import numpy as npn1 = np.array([1,2])
n2 = np.array([3,4])print(n1 ** n2)//输出:[ 1 16]
  • 比较运算
import numpy as npn1 = np.array([1,2])
n2 = np.array([3,4])print(n1 >= n2)
print(n1 == n2)
print(n1 <= n2)
print(n1 != n2)//输出
[False False]
[False False]
[ True  True]
[ True  True]
  • 复制数组
import numpy as npn1 = np.array([1,2])
n2 = n1.copy()print(n1 == n2)
n2[0] = 9
print(n1)
print(n2)
print(n1 == n2)//输出
[ True  True]
[1 2]
[9 2]
[False  True]
  • 索引和切片
import numpy as npn1 = np.array([1,2,3])
print(n1[0])
print(n1[1])
print(n1[0:2])
print(n1[1:])
print(n1[:2])//输出
1
2
[1 2]
[2 3]
[1 2]
4、创建图像

在OpenCV中,黑白图像实际是一个二维数组,彩色图像是一个三维数组。数组中每个元素就是图像对应位置的像素值。因此修改图像像素的操作实际就是修改数组的操作

注意:数组索引、像素行列、像素坐标的关系如下数组行索引 = 像素所在行数 - 1 = 像素纵坐标数组列索引 = 像素所在列数 - 1 = 像素横坐标 
  • 创建纯黑色图像
import cv2
import numpy as npwidth = 200
height = 100#创建指定宽度、高度、像素值都为0的图像
img = np.zeros((height,width),np.uint8) #用0填充数组
cv2.imshow("img",img)cv2.waitKey()
cv2.destroyWindow()
  • 创建纯白色图像
import cv2
import numpy as npwidth = 200
height = 100#创建指定宽度、高度、像素值都为1的图像
img = np.ones((height,width),np.uint8)*255 #用1填充数组,然后再乘以255
cv2.imshow("img",img)cv2.waitKey()
cv2.destroyWindow()
  • 在黑色图像内部绘制白色矩形
import cv2
import numpy as npwidth = 200
height = 100#创建指定宽度、高度、像素值都为0的图像
img = np.zeros((height,width),np.uint8) #用0填充数组
# 图像纵坐标为25~75、横坐标为50~100之间的区域变为白色
img[25:75,50:100] = 255
cv2.imshow("img",img)cv2.waitKey()
cv2.destroyWindow()
  • 创建彩色图像
import cv2
import numpy as npwidth = 200
height = 100#创建指定宽度、高度、像素值都为0的图像
img = np.zeros((height,width,3),np.uint8) #用0填充数组
blue = img.copy()
blue[:,:,0] = 255
green = img.copy()
green[:,:,1] = 255
red = img.copy()
red[:,:,2] = 255cv2.imshow("blue",blue)
cv2.imshow("green",green)
cv2.imshow("red",red)cv2.waitKey()
cv2.destroyWindow()
5、图像拼接
  • 水平拼接数组

array  =  numpy.hstack(tup)
参数说明:tup:要拼接的数组元组
返回值说明:array:将参数元组中的数组水平拼接后生成的新数组
  • 垂直拼接数组
array = numpy.vstack(tup)
参数说明:tup:要拼接的数组元组
返回值说明:array:将参数元组中的数组垂直拼接后生成的新数组
  • 拼接图像
import cv2
import numpy as npimg = cv2.imread("E:/images/avatar.png")img_h = np.hstack((img,img))
img_v = np.vstack((img,img))cv2.imshow("img_h",img_h)
cv2.imshow("img_v",img_v)cv2.waitKey()
cv2.destroyWindow()
五、总结

相关文章:

图像数字化基础

一、像素 1、获取图像指定位置的像素 import cv2 image cv2.imread("E:\\images\\2.png") px image[291,218] print("坐标(291,218)上的像素的BGR值是&#xff1a;",px) &#xff08;1&#xff09;RGB色彩空间 R通道&#xff1a;红色通道 G通道&…...

让你的Python代码更简洁:一篇文章带你了解Python列表推导式

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 列表推导式 📒📝 语法📝 条件筛选📝 多重循环📝 列表推导式的优点📝 使用场景📝 示例代码🎯 示例1🎯 示例2⚓️ 相关链接 ⚓️📖 介绍 📖 在Python编程中,列表推导式是一种强大且高效的语法,它允许你用…...

基于Matlab的BP神经网络的车牌识别系统(含GUI界面)【W7】

简介&#xff1a; 本系统结合了图像处理技术和机器学习方法&#xff08;BP神经网络&#xff09;&#xff0c;能够有效地实现车牌的自动识别。通过预处理、精确定位、字符分割和神经网络识别&#xff0c;系统能够准确地识别各种车牌图像&#xff0c;并在智能交通管理、安防监控等…...

jetpack compose的@Preview和自定义主题

1.Preview Preview可以在 Android Studio 的预览窗口中实时查看和调试 UI 组件。 基本使用 import androidx.compose.foundation.layout.fillMaxSize import androidx.compose.material.MaterialTheme import androidx.compose.material.Surface import androidx.compose.ma…...

Temu(拼多多跨境电商) API接口:获取商品详情

核心功能介绍——获取商品详情 在竞争激烈的电商市场中&#xff0c;快速、准确地获取商品数据详情对于电商业务的成功至关重要。此Temu接口的核心功能在于其能够实时、全面地获取平台上的商品数据详情。商家通过接入Temu接口&#xff0c;可以轻松获取商品的标题、价格、库存、…...

ArcGIS Pro SDK (五)内容 2 工程项

ArcGIS Pro SDK &#xff08;五&#xff09;内容 2 地图工程 目录 ArcGIS Pro SDK &#xff08;五&#xff09;内容 2 地图工程1 将文件夹连接项添加到当前工程2.2 获取所有工程项2.3 获取工程的所有“MapProjectItems”2.4 获取特定的“MapProjectItem”2.5 获取所有“样式工程…...

【ai】初识pytorch

初识PyTorch 大神的例子运行: 【ai】openai-quickstart 配置pycharm工程 简单例子初识一下Pytorch 好像直接点击下载比较慢? 大神的代码 在这个例子中,首先定义一个线性模型,该模型有一个输入特征和一个输出特征。然后定义一个损失函数和一个优化器,接着生成一些简单的线性…...

pcl::PointXYZRGBA造成点云无法显示

如果pcd文件没有rgba信息&#xff0c;使用pcl::PointXYZRGBA类型打开会提示以下信息&#xff1a; Failed to find match for field rgba另外&#xff0c;显示出来的点云是黑色&#xff0c;如果使用默认背景色为黑色&#xff0c;就无法显示点云了。 如果设置其它背景色&#xf…...

【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation)

文章目录 一、文章概览&#xff08;一&#xff09;问题的提出&#xff08;二&#xff09;文章工作 二、理论背景&#xff08;一&#xff09;密度比估计DRE&#xff08;二&#xff09;去噪扩散模型 三、方法&#xff08;一&#xff09;推导分类和去噪之间的关系&#xff08;二&a…...

kubesphere踩过的坑,持续更新....

踩过的坑 The connection to the server lb.kubesphere.local:6443 was refused - did you specify the right host… 另一篇文档中 dashboard 安装 需要在浏览器中输入thisisunsafe,即可进入登录页面 ingress 安装的问题 问题描述&#xff1a; 安装后通过命令 kubectl g…...

做Android开发怎么才能不被淘汰?

多学一项技能&#xff0c;可能就会成为你升职加薪的利器。经常混迹于各复杂业务线的人&#xff0c;才能跳出重复工作、不断踩坑的怪圈。而一个成熟的码农在于技术过关后&#xff0c;更突出其他技能对专业技术的附加值。 毋须讳言的是&#xff0c;35岁以后你的一线coding能力一…...

异步爬虫:aiohttp 异步请求库使用:

使用requests 请求库虽然可以完成爬虫业务&#xff0c;但是对于异步任务来说&#xff0c;它是做不到的&#xff0c; 这时候我们需要借助 aiohttp 异步请求库来完成异步爬虫的编写&#xff1a; 话不多说&#xff0c;直接看示例&#xff1a; 注意&#xff1a;楼主使用的python版…...

代码随想录算法训练营第四十七天|LeetCode123 买卖股票的最佳时机Ⅲ

题1&#xff1a; 指路&#xff1a;123. 买卖股票的最佳时机 III - 力扣&#xff08;LeetCode&#xff09; 思路与代码&#xff1a; 买卖股票专题中三者不同的是Ⅰ为只买卖一次&#xff0c;Ⅱ可多次买卖&#xff0c;Ⅲ最多可买卖两次。那么我们将买买卖行为分为五个状态部分(…...

将知乎专栏文章转换为 Markdown 文件保存到本地

一、参考内容 参考知乎文章代码 | 将知乎专栏文章转换为 Markdown 文件保存到本地&#xff0c;利用代码为GitHub&#xff1a;https://github.com/chenluda/zhihu-download。 二、步骤 1.首先安装包flask、flask-cors、markdownify 2. 运行app.py 3.在浏览器中打开链接&…...

【notes2】并发,IO,内存

文章目录 1.线程/协程/异步&#xff1a;并发对应硬件资源是cpu&#xff0c;线程是操作系统如何利用cpu资源的一种抽象2.并发&#xff1a;cpu&#xff0c;线程2.1 可见性&#xff1a;volatile2.2 原子性&#xff08;读写原子&#xff09;&#xff1a;AtomicInteger/synchronized…...

Python题目

实例 3.1 兔子繁殖问题&#xff08;斐波那契数列&#xff09; 兔子从出生后的第三个月开始&#xff0c;每月都会生一对兔子&#xff0c;小兔子成长到第三个月后也会生一对独自。初始有一对兔子&#xff0c;假如兔子都不死&#xff0c;那么计算并输出1-n个月兔子的数量 n int…...

Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南

文章目录 在Tez上优化Hive查询的指南调优指南理解Tez中的并行化理解mapper数量理解reducer数量 并发案例1&#xff1a;未指定队列名称案例2&#xff1a;指定队列名称并发的指南/建议 容器复用和预热容器容器复用预热容器 一般Tez调优参数 在Tez上优化Hive查询的指南 在Tez上优…...

关于小程序内嵌H5页面交互的问题?

有木有遇到&#xff1f;有木有遇到。 小程序内嵌了H5&#xff0c;然后H5某个按钮&#xff0c;需要打开小程序某个页面进行信息完善或登记&#xff0c;登记后要返回H5页面&#xff0c;而H5页面要动态显示刚才在小程序页面登记的信息。 操作流程是这样&#xff1a; 方案1&#…...

Linux下手动查杀木马与Rootkit的实战指南

模拟木马程序的自动运行 黑客可以通过多种方式让木马程序自动运行&#xff0c;包括&#xff1a; 计划任务 (crontab)&#xff1a;通过设置定时任务来周期性地执行木马脚本。开机启动&#xff1a;在系统的启动脚本中添加木马程序&#xff0c;确保系统启动时木马也随之运行。替…...

电商爬虫API的定制开发:满足个性化需求的解决方案

一、引言 随着电子商务的蓬勃发展&#xff0c;电商数据成为了企业决策的重要依据。然而&#xff0c;电商数据的获取并非易事&#xff0c;特别是对于拥有个性化需求的企业来说&#xff0c;更是面临诸多挑战。为了满足这些个性化需求&#xff0c;电商爬虫API的定制开发成为了解决…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...