当前位置: 首页 > news >正文

scale()函数详解

scale()函数是R语言中用于标准化和中心化数据的一个函数。这个函数通常用于数据预处理,以便于后续的分析和建模。下面是对scale()函数的详细介绍:

用法

scale(x, center = TRUE, scale = TRUE)

参数

  • x: 一个数值型向量、矩阵或数据框,是需要进行标准化或中心化处理的数据。
  • center: 一个逻辑值或数值向量。如果为TRUE(默认),则对数据进行中心化处理(减去均值)。如果为一个数值向量,则该向量的长度必须与列数相同,每一列的数据将减去该向量中的对应值。
  • scale: 一个逻辑值或数值向量。如果为TRUE(默认),则对数据进行标准化处理(除以标准差)。如果为一个数值向量,则该向量的长度必须与列数相同,每一列的数据将除以该向量中的对应值。

返回值

scale()函数返回一个与输入x具有相同维度的对象,其值经过标准化和/或中心化处理。返回值的属性包含中心化和标准化所用的值。

示例

  1. 向量的标准化
x <- c(1, 2, 3, 4, 5)
scaled_x <- scale(x)
print(scaled_x)
# 中心化处理(减去均值),标准化处理(除以标准差)
  1. 矩阵的标准化
m <- matrix(1:9, nrow = 3)
scaled_m <- scale(m)
print(scaled_m)
# 每一列都进行了中心化和标准化处理
  1. 仅进行中心化处理
x <- c(1, 2, 3, 4, 5)
centered_x <- scale(x, center = TRUE, scale = FALSE)
print(centered_x)
# 仅减去均值
  1. 仅进行标准化处理
x <- c(1, 2, 3, 4, 5)
scaled_x <- scale(x, center = FALSE, scale = TRUE)
print(scaled_x)
# 仅除以标准差
  1. 自定义中心化和标准化值
m <- matrix(1:9, nrow = 3)
center <- c(2, 3, 4)
scale_values <- c(1, 2, 3)
custom_scaled_m <- scale(m, center = center, scale = scale_values)
print(custom_scaled_m)
# 使用自定义的中心化和标准化值

应用场景

  • 机器学习:在许多机器学习算法中,标准化数据可以提高算法的性能和收敛速度。
  • 主成分分析(PCA):在进行PCA之前,对数据进行标准化处理可以避免由于量纲不同导致的偏差。
  • 聚类分析:在聚类分析中,标准化数据可以使得每个特征对距离计算的影响相同。

通过scale()函数,可以方便地对数据进行预处理,使得后续的分析和建模更加准确和高效。

相关文章:

scale()函数详解

scale()函数是R语言中用于标准化和中心化数据的一个函数。这个函数通常用于数据预处理&#xff0c;以便于后续的分析和建模。下面是对scale()函数的详细介绍&#xff1a; 用法 scale(x, center TRUE, scale TRUE)参数 x: 一个数值型向量、矩阵或数据框&#xff0c;是需要进…...

计算机基础学习有多重要?学哪些?如何学?

计算机基础是我们计算机生涯的开始&#xff0c;而对大学生来说&#xff0c;基础是一方面&#xff0c;更重要的是应对面试。这样说吧&#xff0c;校招&#xff1a;计算机基础占90%&#xff0c;专业知识占10%&#xff0c;社招&#xff1a;计算机基础占20%&#xff0c;专业知识占8…...

Oracle day9

------------------------------------------------------------------------------------ --创建用户 create user test1 identified by 123456; create user ZJun identified by 888888; --授予权限 grant create session to test1; grant create session to ZJun; --删除用…...

Race Condition竞争条件

Race Condition Question – why was there no race condition in the first solution (where at most N – 1) buffers can be filled?Processes P0 and P1 are creating child processes using the fork() system callRace condition on kernel variable next_available_pid…...

docker 删除本地镜像释放磁盘空间

时间一长&#xff0c;本地镜像文件特别多&#xff1a; 1 linux 配置crontab 定期删除 crontab l 查看 crontab e 编辑 30 3 * * * /home/mqq/gengmingming/cleanImage-realize.sh > /home/mqq/gengmingming/cleanImage-realize.log 2>&12 cleanImage-realize.sh …...

JVM中的垃圾回收器

文章目录 垃圾回收器发展史垃圾回收器分类按线程数分类按工作模式分类按处理方式分类 查看默认垃圾收集器评估垃圾回收器性能指标吞吐量暂停时间吞吐量对比暂停时间 7种经典的垃圾回收器垃圾回收器与垃圾分代垃圾收集器的组合关系Serial GCParNew GCParallel Scavenge GCSerial…...

记录一些可用的AI工具网站

记录一些可用的AI工具网站 AI对话大模型AI图片生成AI乐曲生成AI视频生成AI音频分离 AI对话大模型 当前时代巅峰&#xff0c;Microsoft Copilot&#xff1a;https://copilot.microsoft.com AI图片生成 stable diffusion模型资源分享社区&#xff0c;civitai&#xff1a;https…...

vue3页面传参

一&#xff0c;用query传参 方法&#xff1a; router.push({path: ‘路由地址’, query: ‘参数’}) 例子&#xff1a;a页面携带参数跳转到b页面并且b页面拿到a页面传递过来的参数 在路由router.ts配置 a页面&#xff1a; <template><div >a页面</div>…...

QNX OS微内核系统

微内核架构 微内核(Microkernel)架构是一种操作系统架构模式,其核心思想是尽量将操作系统的基本功能压缩在最小的核心中,而将其他服务(如设备驱动、文件系统、网络协议等)放在用户空间中运行,从而增加系统的灵活性和安全性,这种架构有几个主要特点和优势: 最小化核心…...

ViT:5 Knowledge Distillation

实时了解业内动态&#xff0c;论文是最好的桥梁&#xff0c;专栏精选论文重点解读热点论文&#xff0c;围绕着行业实践和工程量产。若在某个环节出现卡点&#xff0c;可以回到大模型必备腔调或者LLM背后的基础模型重新阅读。而最新科技&#xff08;Mamba,xLSTM,KAN&#xff09;…...

2024头歌数据库期末综合(部分题)

目录 第7关&#xff1a;数据查询三 任务描述 知识补充 答案 第8关&#xff1a;数据查询四 任务描述 知识补充 答案 本篇博客声明&#xff1a;所有题的答案不在一起&#xff0c;可以去作者博客专栏寻找其它文章。 第7关&#xff1a;数据查询三 任务描述 本关任务&#x…...

【Flask】学习

参考B站视频&#xff1a;https://www.bilibili.com/video/BV1v7411M7us/ 目录 第一讲 什么是 flask 修饰器、路由规则 flask 变量规则&#xff0c;灵活传参数据类型&#xff1a;str、int、float&#xff08;正浮点数&#xff0c;传int会报错&#xff09;、path、uuid app.…...

图像数字化基础

一、像素 1、获取图像指定位置的像素 import cv2 image cv2.imread("E:\\images\\2.png") px image[291,218] print("坐标(291,218)上的像素的BGR值是&#xff1a;",px) &#xff08;1&#xff09;RGB色彩空间 R通道&#xff1a;红色通道 G通道&…...

让你的Python代码更简洁:一篇文章带你了解Python列表推导式

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 列表推导式 📒📝 语法📝 条件筛选📝 多重循环📝 列表推导式的优点📝 使用场景📝 示例代码🎯 示例1🎯 示例2⚓️ 相关链接 ⚓️📖 介绍 📖 在Python编程中,列表推导式是一种强大且高效的语法,它允许你用…...

基于Matlab的BP神经网络的车牌识别系统(含GUI界面)【W7】

简介&#xff1a; 本系统结合了图像处理技术和机器学习方法&#xff08;BP神经网络&#xff09;&#xff0c;能够有效地实现车牌的自动识别。通过预处理、精确定位、字符分割和神经网络识别&#xff0c;系统能够准确地识别各种车牌图像&#xff0c;并在智能交通管理、安防监控等…...

jetpack compose的@Preview和自定义主题

1.Preview Preview可以在 Android Studio 的预览窗口中实时查看和调试 UI 组件。 基本使用 import androidx.compose.foundation.layout.fillMaxSize import androidx.compose.material.MaterialTheme import androidx.compose.material.Surface import androidx.compose.ma…...

Temu(拼多多跨境电商) API接口:获取商品详情

核心功能介绍——获取商品详情 在竞争激烈的电商市场中&#xff0c;快速、准确地获取商品数据详情对于电商业务的成功至关重要。此Temu接口的核心功能在于其能够实时、全面地获取平台上的商品数据详情。商家通过接入Temu接口&#xff0c;可以轻松获取商品的标题、价格、库存、…...

ArcGIS Pro SDK (五)内容 2 工程项

ArcGIS Pro SDK &#xff08;五&#xff09;内容 2 地图工程 目录 ArcGIS Pro SDK &#xff08;五&#xff09;内容 2 地图工程1 将文件夹连接项添加到当前工程2.2 获取所有工程项2.3 获取工程的所有“MapProjectItems”2.4 获取特定的“MapProjectItem”2.5 获取所有“样式工程…...

【ai】初识pytorch

初识PyTorch 大神的例子运行: 【ai】openai-quickstart 配置pycharm工程 简单例子初识一下Pytorch 好像直接点击下载比较慢? 大神的代码 在这个例子中,首先定义一个线性模型,该模型有一个输入特征和一个输出特征。然后定义一个损失函数和一个优化器,接着生成一些简单的线性…...

pcl::PointXYZRGBA造成点云无法显示

如果pcd文件没有rgba信息&#xff0c;使用pcl::PointXYZRGBA类型打开会提示以下信息&#xff1a; Failed to find match for field rgba另外&#xff0c;显示出来的点云是黑色&#xff0c;如果使用默认背景色为黑色&#xff0c;就无法显示点云了。 如果设置其它背景色&#xf…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...