当前位置: 首页 > news >正文

正则表达式引擎NFA自动机的回溯解决方案总结

前几天线上一个项目监控信息突然报告异常,上到机器上后查看相关资源的使用情况,发现 CPU 利用率将近 100%。通过 Java 自带的线程 Dump 工具,我们导出了出问题的堆栈信息。

我们可以看到所有的堆栈都指向了一个名为 validateUrl 的方法,这样的报错信息在堆栈中一共超过 100 处。通过排查代码,我们知道这个方法的主要功能是校验 URL 是否合法。

很奇怪,一个正则表达式怎么会导致 CPU 利用率居高不下。为了弄清楚复现问题,我们将其中的关键代码摘抄出来,做了个简单的单元测试。

public static void main(String[] args) {String badRegex = "^([hH][tT]{2}[pP]://|[hH][tT]{2}[pP][sS]://)(([A-Za-z0-9-~]+).)+([A-Za-z0-9-~\\\\/])+$";String bugUrl = "http://www.fapiao.com/dddp-web/pdf/download?request=6e7JGxxxxx4ILd-kExxxxxxxqJ4-CHLmqVnenXC692m74H38sdfdsazxcUmfcOH2fAfY1Vw__%5EDadIfJgiEf";if (bugUrl.matches(badRegex)) {System.out.println("match!!");} else {System.out.println("no match!!");}
}

当我们运行上面这个例子的时候,通过资源监视器可以看到有一个名为 java 的进程 CPU 利用率直接飙升到了 91.4% 。

看到这里,我们基本可以推断,这个正则表达式就是导致 CPU 利用率居高不下的凶手!

于是,我们将排错的重点放在了那个正则表达式上:

^([hH][tT]{2}[pP]://|[hH][tT]{2}[pP][sS]://)(([A-Za-z0-9-~]+).)+([A-Za-z0-9-~\\/])+$

这个正则表达式看起来没什么问题,可以分为三个部分:

第一部分匹配 http 和 https 协议,第二部分匹配 www. 字符,第三部分匹配许多字符。我看着这个表达式发呆了许久,也没发现没有什么大的问题。

其实这里导致 CPU 使用率高的关键原因就是:Java 正则表达式使用的引擎实现是 NFA 自动机,这种正则表达式引擎在进行字符匹配时会发生回溯(backtracking)。而一旦发生回溯,那其消耗的时间就会变得很长,有可能是几分钟,也有可能是几个小时,时间长短取决于回溯的次数和复杂度。

看到这里,可能大家还不是很清楚什么是回溯,还有点懵。没关系,我们一点点从正则表达式的原理开始讲起。

正则表达式引擎

正则表达式是一个很方便的匹配符号,但要实现这么复杂,功能如此强大的匹配语法,就必须要有一套算法来实现,而实现这套算法的东西就叫做正则表达式引擎。简单地说,实现正则表达式引擎的有两种方式:DFA 自动机(Deterministic Final Automata 确定型有穷自动机)和 NFA 自动机(Non deterministic Finite Automaton 不确定型有穷自动机)。

对于这两种自动机,他们有各自的区别,这里并不打算深入将它们的原理。简单地说,DFA 自动机的时间复杂度是线性的,更加稳定,但是功能有限。而 NFA 的时间复杂度比较不稳定,有时候很好,有时候不怎么好,好不好取决于你写的正则表达式。但是胜在 NFA 的功能更加强大,所以包括 Java 、.NET、Perl、Python、Ruby、PHP 等语言都使用了 NFA 去实现其正则表达式。

那 NFA 自动机到底是怎么进行匹配的呢?我们以下面的字符和表达式来举例说明。

text="Today is a nice day."
regex="day"

要记住一个很重要的点,即:NFA 是以正则表达式为基准去匹配的。也就是说,NFA 自动机会读取正则表达式的一个一个字符,然后拿去和目标字符串匹配,匹配成功就换正则表达式的下一个字符,否则继续和目标字符串的下一个字符比较。或许你们听不太懂,没事,接下来我们以上面的例子一步步解析。

  • 首先,拿到正则表达式的第一个匹配符:d。于是那去和字符串的字符进行比较,字符串的第一个字符是 T,不匹配,换下一个。第二个是 o,也不匹配,再换下一个。第三个是 d,匹配了,那么就读取正则表达式的第二个字符:a。
  • 读取到正则表达式的第二个匹配符:a。那着继续和字符串的第四个字符 a 比较,又匹配了。那么接着读取正则表达式的第三个字符:y。
  • 读取到正则表达式的第三个匹配符:y。那着继续和字符串的第五个字符 y 比较,又匹配了。尝试读取正则表达式的下一个字符,发现没有了,那么匹配结束。

上面这个匹配过程就是 NFA 自动机的匹配过程,但实际上的匹配过程会比这个复杂非常多,但其原理是不变的。

NFA自动机的回溯

了解了 NFA 是如何进行字符串匹配的,接下来我们就可以讲讲这篇文章的重点了:回溯。为了更好地解释回溯,我们同样以下面的例子来讲解。

text="abbc"
regex="ab{1,3}c"

上面的这个例子的目的比较简单,匹配以 a 开头,以 c 结尾,中间有 1-3 个 b 字符的字符串。NFA 对其解析的过程是这样子的:

  • 首先,读取正则表达式第一个匹配符 a 和 字符串第一个字符 a 比较,匹配了。于是读取正则表达式第二个字符。
  • 读取正则表达式第二个匹配符 b{1,3} 和字符串的第二个字符 b 比较,匹配了。但因为 b{1,3} 表示 1-3 个 b 字符串,以及 NFA 自动机的贪婪特性(也就是说要尽可能多地匹配),所以此时并不会再去读取下一个正则表达式的匹配符,而是依旧使用 b{1,3} 和字符串的第三个字符 b 比较,发现还是匹配。于是继续使用 b{1,3} 和字符串的第四个字符 c 比较,发现不匹配了。此时就会发生回溯。
  • 发生回溯是怎么操作呢?发生回溯后,我们已经读取的字符串第四个字符 c 将被吐出去,指针回到第三个字符串的位置。之后,程序读取正则表达式的下一个操作符 c,读取当前指针的下一个字符 c 进行对比,发现匹配。于是读取下一个操作符,但这里已经结束了。

下面我们回过头来看看前面的那个校验 URL 的正则表达式:

^([hH][tT]{2}[pP]://|[hH][tT]{2}[pP][sS]://)(([A-Za-z0-9-~]+).)+([A-Za-z0-9-~\\/])+$

出现问题的 URL 是:

http://www.fapiao.com/dzfp-web/pdf/download?request=6e7JGm38jfjghVrv4ILd-kEn64HcUX4qL4a4qJ4-CHLmqVnenXC692m74H5oxkjgdsYazxcUmfcOH2fAfY1Vw__%5EDadIfJgiEf

我们把这个正则表达式分为三个部分:

  • 第一部分:校验协议。^([hH][tT]{2}[pP]://|[hH][tT]{2}[pP][sS]://)
  • 第二部分:校验域名。(([A-Za-z0-9-~]+).)+
  • 第三部分:校验参数。([A-Za-z0-9-~\\/])+$

我们可以发现正则表达式校验协议 http:// 这部分是没有问题的,但是在校验 www.fapiao.com 的时候,其使用了 xxxx. 这种方式去校验。那么其实匹配过程是这样的:

  • 匹配到 www.
  • 匹配到 fapiao.
  • 匹配到 com/dzfp-web/pdf/download?request=6e7JGm38jf.....,你会发现因为贪婪匹配的原因,所以程序会一直读后面的字符串进行匹配,最后发现没有点号,于是就一个个字符回溯回去了。

这是这个正则表达式存在的第一个问题。

另外一个问题是在正则表达式的第三部分,我们发现出现问题的 URL 是有下划线(_)和百分号(%)的,但是对应第三部分的正则表达式里面却没有。这样就会导致前面匹配了一长串的字符之后,发现不匹配,最后回溯回去。

这是这个正则表达式存在的第二个问题。

解决方案

明白了回溯是导致问题的原因之后,其实就是减少这种回溯,你会发现如果我在第三部分加上下划线和百分号之后,程序就正常了。

public static void main(String[] args) {String badRegex = "^([hH][tT]{2}[pP]://|[hH][tT]{2}[pP][sS]://)(([A-Za-z0-9-~]+).)+([A-Za-z0-9-~_%\\\\/])+$";String bugUrl = "http://www.fapiao.com/dddp-web/pdf/download?request=6e7JGxxxxx4ILd-kExxxxxxxqJ4-CHLmqVnenXC692m74H38sdfdsazxcUmfcOH2fAfY1Vw__%5EDadIfJgiEf";if (bugUrl.matches(badRegex)) {System.out.println("match!!");} else {System.out.println("no match!!");}
}

运行上面的程序,立刻就会打印出match!!

但这是不够的,如果以后还有其他 URL 包含了乱七八糟的字符呢,我们难不成还再修改一遍。肯定不现实嘛!

其实在正则表达式中有这么三种模式:贪婪模式、懒惰模式、独占模式。

在关于数量的匹配中,有 + ? * {min,max} 四种两次,如果只是单独使用,那么它们就是贪婪模式。

如果在他们之后加多一个 ? 符号,那么原先的贪婪模式就会变成懒惰模式,即尽可能少地匹配。但是懒惰模式还是会发生回溯现象的。例如下面这个例子:

text="abbc"
regex="ab{1,3}?c"

正则表达式的第一个操作符 a 与 字符串第一个字符 a 匹配,匹配成功。于是正则表达式的第二个操作符 b{1,3}? 和 字符串第二个字符 b 匹配,匹配成功。因为最小匹配原则,所以拿正则表达式第三个操作符 c 与字符串第三个字符 b 匹配,发现不匹配。于是回溯回去,拿正则表达式第二个操作符 b{1,3}? 和字符串第三个字符 b 匹配,匹配成功。于是再拿正则表达式第三个操作符 c 与字符串第四个字符 c 匹配,匹配成功。于是结束。

如果在他们之后加多一个 + 符号,那么原先的贪婪模式就会变成独占模式,即尽可能多地匹配,但是不回溯。

于是乎,如果要彻底解决问题,就要在保证功能的同时确保不发生回溯。我将上面校验 URL 的正则表达式的第二部分后面加多了个 + 号,即变成这样:

^([hH][tT]{2}[pP]:\/\/|[hH][tT]{2}[pP][sS]:\/\/)
(([A-Za-z0-9-~]+).)++    --->>> (这里加了个+号)
([A-Za-z0-9-~_%\\\/])+$

这样之后,运行原有的程序就没有问题了。

最后推荐一个网站,这个网站可以检查你写的正则表达式和对应的字符串匹配时会不会有问题。

Online regex tester and debugger: PHP, PCRE, Python, Golang and JavaScript

例如我本文中存在问题的那个 URL 使用该网站检查后会提示:catastrophic backgracking(灾难性回溯)。

当你点击左下角的「regex debugger」时,它会告诉你一共经过多少步检查完毕,并且会将所有步骤都列出来,并标明发生回溯的位置。

 本文中的这个正则表达式在进行了 11 万步尝试之后,自动停止了。这说明这个正则表达式确实存在问题,需要改进。

但是当我用我们修改过的正则表达式进行测试,即下面这个正则表达式。

^([hH][tT]{2}[pP]:\/\/|[hH][tT]{2}[pP][sS]:\/\/)(([A-Za-z0-9-~]+).)++([A-Za-z0-9-~\\\/])+$

工具提示只用了 58 步就完成了检查。

一个字符的差别,性能就差距了好几万倍。

总结

一个小小的正则表达式竟然能够把 CPU 拖垮,也是很神奇了。这也给平时写程序的我们一个警醒,遇到正则表达式的时候要注意贪婪模式和回溯问题,否则我们每写的一个表达式都是一个雷。

相关文章:

正则表达式引擎NFA自动机的回溯解决方案总结

前几天线上一个项目监控信息突然报告异常,上到机器上后查看相关资源的使用情况,发现 CPU 利用率将近 100%。通过 Java 自带的线程 Dump 工具,我们导出了出问题的堆栈信息。 我们可以看到所有的堆栈都指向了一个名为 validateUrl 的方法&#…...

卷积神经网络之AlexNet

目录概述AlexNet特点激活函数sigmoid激活函数ReLu激活函数数据增强层叠池化局部相应归一化DropoutAlexnet网络结构网络结构分析AlexNet各层参数及其数量模型框架形状结构关于数据集训练学习keras代码示例概述 由于受到计算机性能的影响,虽然LeNet在图像分类中取得了…...

React中setState什么时候是同步的,什么时候是异步的?

本文内容均针对于18.x以下版本 setState 到底是同步还是异步?很多人可能都有这种经历,面试的时候面试官给了你一段代码,让你说出输出的内容,比如这样: constructor(props) {super(props);this.state {val: 0}}compo…...

优秀开源软件的类,都是怎么命名的?

日常编码中,代码的命名是个大的学问。能快速的看懂开源软件的代码结构和意图,也是一项必备的能力。 Java项目的代码结构,能够体现它的设计理念。Java采用长命名的方式来规范类的命名,能够自己表达它的主要意图。配合高级的 IDEA&…...

绘制CSP的patterns矩阵图

最近在使用FBCSP处理数据,然后就想着看看处理后的样子,用地形图的形式表现出来,但是没有符合自己需求的函数可以实现,就自己尝试的实现了一下,这里记录一下,方便以后查阅。 绘制CSP的patterns矩阵图 对数据做了FBCSP处理,但是想画一下CSP计算出来的patterns的地形图,并…...

Datatables展示数据(表格合并、日期计算、异步加载数据、分页显示、筛选过滤)

系列文章目录 datatable 自定义筛选按钮的解决方案Echarts实战案例代码(21):front-endPage的CJJTable前端分页插件ajax分页异步加载数据的解决方案 文章目录系列文章目录前言一、html容器构建1.操作按钮2.表格构建二、时间日期计算三、dataTables属性配置1.调用2.过…...

Python decimal模块的使用

Python decimal 模块Python中的浮点数默认精度是15位。Decimal对象可以表示任意精度的浮点数。getcontext函数用于获取当前的context环境,可以设置精度、舍入模式等参数。#在context中设置小数的精度 decimal.getcontext().prec 100通过字符串初始化Decimal类型的变…...

pycharm常用快捷键

编辑类: Ctrl D 复制选定的区域或行 Ctrl Y 删除选定的行 Ctrl Alt L 代码格式化 Ctrl Alt O 优化导入(去掉用不到的包导入) Ctrl 鼠标 简介/进入代码定义 Ctrl / 行注释 、取消注释 Ctrl 左方括号 快速跳到代码开头 Ctrl 右方括…...

useCallback 与 useMemo 的区别 作用

useCallback 缓存钩子函数&#xff0c;useMemo 缓存返回值&#xff08;计算结果&#xff09;。 TS声明如下&#xff1a;type DependencyList ReadonlyArray<any>;function useCallback<T extends (...args: any[]) > any>(callback: T, deps: DependencyList)…...

Mybatis的学习

01-mybatis传统dao开发模式 概述 mybatis有两种使用模式: ①传统dao开发模式, ②dao接口代理开发模式 ①传统dao开发模式 dao接口 dao实现子类 mapper映射文件dao实现子类来决定了dao接口的方法和mapper映射文件的statement的关系 代码实现 public class StudentDaoImpl im…...

PyTorch深度学习实战 | 计算机视觉

深度学习领域技术的飞速发展&#xff0c;给人们的生活带来了很大改变。例如&#xff0c;智能语音助手能够与人类无障碍地沟通&#xff0c;甚至在视频通话时可以提供实时翻译&#xff1b;将手机摄像头聚焦在某个物体上&#xff0c;该物体的相关信息就会被迅速地反馈给使用者&…...

力扣(LeetCode)436. 寻找右区间(2023.03.10)

给你一个区间数组 intervals &#xff0c;其中 intervals[i] [starti, endi] &#xff0c;且每个 starti 都 不同 。 区间 i 的 右侧区间 可以记作区间 j &#xff0c;并满足 startj > endi &#xff0c;且 startj 最小化 。 返回一个由每个区间 i 的 右侧区间 在 interv…...

已解决Servlet中Request请求参数中文乱码的问题

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者。&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4d…...

【flask】URL和视图映射

目录 首页 传参 URL数据类型 get传参 首页 url与视图函数的映射是通过app.route()装饰器实现的。 只有一个斜杠代表的是根目录——首页。 传参 URL传参是通过<参数名称>的形式进行传递。URL中有几个参数&#xff0c;在视图函数中也要指定几个参数 from flask im…...

Python实现性能测试(locust)

一、安装locustpip install locust -- 安装&#xff08;在pycharm里面安装或cmd命令行安装都可&#xff09;locust -V -- 查看版本&#xff0c;显示了就证明安装成功了或者直接在Pycharm中安装locust:搜索locust并点击安装&#xff0c;其他的第三方包也可以通过这种方式二、loc…...

【数论】试除法判断质数,分解质因数,筛质数

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法......感兴趣就关注我吧&#xff01;你定不会失望。 &#x1f308;个人主页&#xff1a;主页链接 &#x1f308;算法专栏&#xff1a;专栏链接 现已更新完KMP算法、排序模板&#xff0c;之…...

【C++】红黑树

文章目录红黑树的概念红黑树的性质特征红黑树结点的定义红黑树的插入操作情况1情况2情况3特殊情况代码实现红黑树的验证红黑树的删除红黑树和AVL树的比较红黑树的应用红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但是每一个结点都增加一个存储位表示结点的颜…...

【剧前爆米花--爪哇岛寻宝】进程的调度以及并发和并行,以及PCB中属性的详解。

作者&#xff1a;困了电视剧 专栏&#xff1a;《JavaEE初阶》 文章分布&#xff1a;这是关于进程调度、并发并行以及相关属性详解的文章&#xff0c;我会在之后文章中更新有关线程的相关知识&#xff0c;并将其与进程进行对比&#xff0c;希望对你有所帮助。 目录 什么是进程/…...

网络的瓶颈效应

python从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129328397?spm1001.2014.3001.5501 ❤ 网络的瓶颈效应 网络瓶颈&#xff0c;指的是影响网络传输性能及稳定性的一些相关因素&#xff0c;如网络拓扑结构&#xff0c;网线&#xff0…...

【C++进阶】四、红黑树(三)

目录 一、红黑树的概念 二、红黑树的性质 三、红黑树节点的定义 四、红黑树的插入 五、红黑树的验证 六、红黑树与AVL树的比较 七、完整代码 一、红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

【java】【服务器】线程上下文丢失 是指什么

目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失&#xff1f; 直观示例说明 为什么上下文如此重要&#xff1f; 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程&#xff0c;代码应该如何实现 推荐方案&#xff1a;使用 ManagedE…...