当前位置: 首页 > news >正文

『FPGA通信接口』LVDS接口(4)LVDS接收端设计

在这里插入图片描述

文章目录

  • 1.LVDS接收端概述
  • 2逻辑框图
  • 3.xapp855训练代码解读
  • 4.接收端发送端联调
  • 5.传送门

1.LVDS接收端概述

接收端的传输模型各个属性应该与LVDS发送端各属性一致,例如,如果用于接收CMOS图像传感器的图像数据,则接收端程序的串化因子、通道个数等将要与设备一致。在硬件设计上,LVDS时钟线和LVDS数据线应该等长设计,但由于布线制板工艺的影响,难免数据线和时钟线无法同时到达接收端,在传输速度快时,微乎其微的偏差都可能让数据出错,这就是LVDS接收端要解决的问题,即在数据稳定窗口的中心采样,保持数据的稳定,这个动作称之为位对齐。此外,当在数据线上重复发送ABCDEFGH(假设一个字母代表一个bit),有可能接收到的是BCDEFGHA产生字偏移,通过ISERDES2的bitslip可以完成数据的平移,这个动作称之为“字对齐”。接收端通过IBUFDS进行差分转单端信号便于逻辑处理,将lvds传输线上的串行数据经过IDELAY2进行位对齐操作,随后利用ISERDES2将该串行数据并行化即字对齐操作,将发送端的数据恢复。其难点就在于如何实现字对齐和位对齐操作。Xilinx提供了多个例程适用于不同系列的FPGA,如xapp860和xapp855适于V5,xapp585适用于7系列,还有适用于ultrascale的例程。本例程基于xapp855修改使之适配7系列并满足既定传输模型属性要求。

2逻辑框图

以下框图截取自xapp855,与示例程序并不一致。数据差分信号经IBUFDS转化为单端信号,进入IDELAY2(由于xapp855适用于V5,而当前程序适用于7系列,因此原语的名称有所不同)将数据位对齐后进入ISEDERS2转换成并行数据;时钟差分信号经过IBUFDS转化成单端信号,进入IDELAY2(此处为0,以时钟到达为基准)由BUFR倍频出并行时钟,经BUFIO产生串行时钟。此外,使用IDELAY必须要使用IDELAYCTRL,输入200MHz作为参考时钟。还有两个逻辑模块一个是Bit Align Machine实现位对齐字对齐,产生ISERDES2和IDELAY2所需的信号,完成当前LVDS传输线的对齐操作。Resource sharing control实现通道切换,和训练完成的指示。

在这里插入图片描述

3.xapp855训练代码解读

通道选择模块较为简单,主要介绍Bit Align Machine模块是如何完成单通道的数据训练操作。将ISERDES2模块传入的并行数据A打一拍得到B,当A不等于B的时候,认为此时遇到了亚稳态,即建立时间或者保持时间不满足要求的情况。当连续几个周期B等于pattern数据时,认为此时的采样点可用,字对齐也完成。完成数据训练的主要思路是,先使用IDEALY延迟直到找见一个亚稳态的点,未找见就延迟加1,然后继续增加延迟并加入字节对齐的判断直到找到Pattern数据,认为此时找到了数据窗口的左值,继续增加延时值,直到找见下一个亚稳态的采样点。从第一个pattern数据出现,增加延时值到下一个亚稳态的出现之间就是数据有效窗口,然后通过减去延迟值找到采样中心点,此后再次判断字对齐的情况,当字对齐结束后认为此LVDS传输线数据训练完成。由Resource sharing control控制开始训练下一个LVDS传输线。
在这里插入图片描述

以上截图出自xapp855的解释说明,步骤①即是假定数据和时钟到达时二者的相对位置关系。步骤②是经过延时找到了第一个亚稳态窗口(Transition),图中斜线部分代表此时数据采样不稳定。步骤③是通过延时和bitslip寻找到数据有效窗口的左值(Eye)。步骤④是通过延时找到下一个亚稳态窗口,由此在③和④之间便是数据有效的窗口。步骤⑤是将采样点控制到数据有效窗口的中心位置。需要注意,IDELAY2总共只有32个阶,当参考时钟是200MHz时,每一阶延时78ps,即总共可延时32*78=2496ps=2.5ns。因此数据传输的线速率不能太低,线速率太低时需要采用别的方法或者调整该状态机,否则会错误的找到最佳采样点,出现不稳定的情况,因此使用该程序,其线数据传输速率建议大于400Mbps。
下面对该模块中状态机简单分析便于理解。

  1. 00000不动(指各计数模块,idelay、bitslip均不做操作,后同),保证不与通道切换指令冲突。
  2. 00001不动 比较前一个后一个,不相等认为找见第一个亚稳态窗口。
  3. 01000 SAMPLE(指代码中信号含SAMPLE的128bit计数器,后同)计数器加1,连续抓15次判断是否为亚稳态窗口。
  4. 01011 IDELAY延时加1,两个计数器清0。
  5. 00100 SAMPLE控制7个周期后判断是否亚稳态,如此循环直到找到亚稳态窗口,即进入01111状态。(上述五个步骤必定能找见亚稳态窗口)
  6. 01111 SAMPLE清0 IDEALAY加1 准备寻找pattern。
  7. 01101 SAMPLE加1 JC添加8周期等待 找等于check pattern 找见就准备记录 重复上述步骤,直到找见稳态check pattern即渡过第一个窗口 bitslip=1。
  8. 01100 SAMPLE清0 (进入IDLE状态)。
  9. 10000 第二个idle 不动作。
  10. 00010再次确认是否退出了窗口 如果没有退出,重复上述步骤直到退出。
  11. 01110 确认跳出第一个亚稳态窗口,该状态CNT开始计数,找左值。
  12. 01001 idelay值加1 CNT开始计数(记录的是数据有效窗口的大小,CNT指代码中不含SAMPLE的128计数器) 找下一个亚稳态区域。
  13. 00011 SAMPLE计数控制8周期后比较数据,复制当前的CNT中的计数值,找见第二个就退出,找不见就重复上面步骤。
  14. 10010 计数器全部清0 无动作跳转。
  15. 01010 idelay减一减到有效采样的中间处即可,清0CNT。思考,假如taps的值不够用怎么办(即前文提到线数据速率不能太慢,否则会出现这种情况)。
  16. 00101 CNT控制延时,再次确认是否word对齐,默认当前已经到了采样中心点 word对齐则进入成功完成数据训练状态,word没有对齐就再次进入word对齐状态
  17. 00110 bitslip一次
  18. 00111 指示当前通道训练完成,准备切换到下一个通道,重复上述步骤进行训练

注意: 将该程序移植到7系列的板卡时需要注意,7系列的原语ISERDES2与V5不同,bitslip信号不能一直给,一旦一直给将无法穷举所有的可能值,在bitslip使能之后要拉低两个周期继续使能,否则这个系统的状态机可能出错。

4.接收端发送端联调

将发送端和接收端写在一个工程里,验证LVDS的收发,其结果如下,可以看到发送端发送的数据与接收的数据一致,data_aglin信号拉高,代表数据训练完成。
在这里插入图片描述
总结:
①本文只是提供了众多实现lvds收发方法中的一种,例如,可以使用ODDR原语产生差分信号;IDELAY有四种模式,本文使用VARIABLE模式,还可以尝试VAR_LOAD模式;xilinx提供了一个名为SelectIO Interface Wizard的ip核其中涵盖了LVDS收发使用的全部selectio资源,在领悟本例精神后可以用其练手。
②寻找数据中心的方式也是可以灵活多变的。
③xapp855的代码结构以及代码风格可以提供一种新的思考,包括通道与训练的管理,计数器的服用,以及状态指示训练完成的写法都值得学习和总结。
④Xapp585提供了基于7系列的原语设计,便于工程的移植和扩展,另外其位对齐和字对齐分开实现,是数据训练的另外一种思路。
⑤关于文中提到的原语的使用可返回目录查看对应文章。
⑥7系列的iserdes2原语要求bitslip后三个周期才能下一次bitslip,因此在LVDS收发程序中加入了这里的控制。

5.传送门

  • 我的主页
  • FPGA通信接口专栏汇总导航
  • 源码链接
END

🔈文章原创,首发于CSDN论坛。
🔈欢迎点赞❤❤收藏⭐⭐打赏💴💴!
🔈欢迎评论区或私信指出错误❌,提出宝贵意见或疑问❓。


相关文章:

『FPGA通信接口』LVDS接口(4)LVDS接收端设计

文章目录 1.LVDS接收端概述2逻辑框图3.xapp855训练代码解读4.接收端发送端联调5.传送门 1.LVDS接收端概述 接收端的传输模型各个属性应该与LVDS发送端各属性一致,例如,如果用于接收CMOS图像传感器的图像数据,则接收端程序的串化因子、通道个…...

面试题:HTTP的body是二进制还是文本

实际上,HTTP的body可以是二进制数据,也可以是文本。HTTP协议本身不对body内容的格式做限制,具体格式取决于Content-Type头字段的定义。 文本数据: 当Content-Type头字段指定为文本类型时(如text/plain、text/html、ap…...

5分钟带你部署一套Jenkins持续集成环境​

5分钟带你部署一套Jenkins持续集成环境 Jenkins是开源CI&CD软件领导者, 提供超过1000个插件来支持构建、部署、自动化, 满足任何项目的需要。 Jenkins的优点 持续集成和持续交付 作为一个可扩展的自动化服务器,Jenkins 可以用作简单的 CI…...

OpenAI突然宣布停止向中国提供API服务!

标题 🌟 OpenAI突然宣布停止向中国提供API服务! 🌟摘要 📜引言 📢正文 📝1. OpenAI API的重要性2. 停止服务的原因分析3. 对中国市场的影响4. 应对措施代码案例 📂常见问题解答(QA)❓…...

Bootstrap 标签

Bootstrap 标签 引言 Bootstrap 是一个流行的前端框架,它提供了一套丰富的组件和工具,帮助开发者快速构建响应式和移动优先的网页。在 Bootstrap 中,标签(Badge)是一种小巧的组件,用于显示计数、提示或标…...

EtherCAT主站SOEM -- 37 -- win-soem-win10及win11系统QT-SOEM-1个电机转圈圈-周期同步速度模式(CSV模式)

EtherCAT主站SOEM -- 37 -- win-soem-win10及win11系统QT-SOEM-1个电机转圈圈-周期同步速度模式(CSV模式) 0 QT-SOEM及STM32F767-SOEM视频欣赏及源代码链接:0.1 Linux--Ubuntu系统之 QT-SOEM博客、视频欣赏及源代码链接0.2 STM32F767-SOEM 博客、视频欣赏及源代码链接0.3 wi…...

老板舍不得买库存管理软件❓一招解决

在当今快节奏的商业环境中,仓库管理是企业运作中不可或缺的一环。对于许多中小型企业而言,简易且高效的库存管理系统尤为重要。搭贝简易库存管理系统针对仓库的出入库进行有效管理,帮助企业实现库存的透明化和流程的自动化。 客户的痛点 1. …...

【MySQL数据库】:MySQL视图特性

目录 视图的概念 基本使用 准备测试表 创建视图 修改视图影响基表 修改基表影响视图 删除视图 视图规则和限制 视图的概念 视图是一个虚拟表,其内容由查询定义,同真实的表一样,视图包含一系列带有名称的列和行数据。视图中的数据…...

malloc、free和new delete的区别

malloc/free 和 new/delete 是在 C 中分配和释放内存的两种不同方法。它们主要有以下区别: 1. 语法和用法 malloc 和 free: malloc开辟空间时需要手动计算分配的空间大小 int* p (int*)malloc(sizeof(int) * 10); // 分配10个int类型的内存 // 使用内存 free(p); …...

如何有效地优化 Erlang 程序的内存使用,以应对大规模数据处理的需求?

要有效地优化Erlang程序的内存使用,以应对大规模数据处理的需求,可以考虑以下几个方面: 减少不必要的内存分配:避免过多的数据复制和不必要的数据结构创建。可以使用Erlang的二进制数据类型来避免数据复制,使用原子数据…...

vue3项目使用@antv/g6实现可视化流程功能

文章目录 项目需求一、需要解决的问题二、初步使用1.动态数据-组件封装(解决拖拽会留下痕迹的问题,引用图片,在节点右上角渲染图标,实现,事现旋转动画,达到loading效果)2.文本太长,超出部分显示(...),如下函…...

【Linux网络(一)初识计算机网络】

一、网络发展 1.发展背景 2.发展类型 二、网络协议 1.认识协议 2.协议分层 3.OSI七层模型 4.TCP/IP协议 三、网络传输 1.协议报头 2.局域网内的两台主机通信 3.跨网络的两台主机通信 四、网络地址 1.IP地址 2.MAC地址 一、网络发展 1.发展背景 计算机网络的发展…...

Vulhub——Log4j、solr

文章目录 一、Log4j1.1 Apache Log4j2 lookup JNDI 注入漏洞(CVE-2021-44228)1.2 Apache Log4j Server 反序列化命令执行漏洞(CVE-2017-5645) 二、Solr2.1 Apache Solr 远程命令执行漏洞(CVE-2017-12629)2.…...

linux 设置程序自启动

程序随系统开机自启动的方法有很多种, 这里介绍一种简单且常用的, 通过系统的systemd服务进行自启动。 第一步: 新建一个.service文件 sudo vim /etc/systemd/system/myservice.service[Unit] DescriptionMy Service #Afternetwork.target[…...

PostgreSQL 分区表与并行查询(十)

1. 分区表概述 1.1 什么是分区表 分区表是将大表分割成更小、更可管理的部分的技术。每个分区表都可以单独进行索引和查询,从而提高查询性能和管理效率。 1.2 分区策略 1.2.1 基于范围的分区 按照时间范围或者数值范围进行分区,如按月或按地区。 C…...

React Hooks使用规则:为什么不在条件语句和循环中使用它们

React Hooks为函数组件引入了状态和生命周期特性,极大地增强了其功能。然而,正确使用Hooks是确保组件稳定性和性能的关键。本文将探讨React Hooks的基本规则,以及为什么我们不应该在条件语句和循环中使用它们。 Hooks的基本规则 React团队为…...

【Docker】Consul 和API

目录 一、Consul 1. 拉取镜像 2. 启动第一个consul服务:consul1 3. 查看consul service1 的ip地址 4. 启动第二个consul服务:consul2, 并加入consul1(使用join命令) 5. 启动第三个consul服务:consul3&…...

Python polars学习-07 缺失值

背景 polars学习系列文章,第7篇 缺失值 该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习 仓库地址:https://github.com/DataShare-duo/polars_learn 小编运行环境 import sysprint(python 版本:…...

前端面试题(八)答案版

面试形式:线下面试:一面:30分钟二面:30分钟 特殊要求:内网开发自研UI组件库(无文档介绍)学习能力要求高 面试评价:题目灵活应用性较强 面试官:项目负责人前端负责人 …...

在交易中出场比入场更为重要

出场策略和交易退出机制比交易者入场的方式更为关键,它们对整体回报和结果的持续性有着更大的影响。 即使交易者入场时的条件并非最佳,良好的出场策略也能扭转局势。反之,即使交易者以近乎完美的条件入场,若出场策略管理不当&…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

Windows 下端口占用排查与释放全攻略

Windows 下端口占用排查与释放全攻略​ 在开发和运维过程中&#xff0c;经常会遇到端口被占用的问题&#xff08;如 8080、3306 等常用端口&#xff09;。本文将详细介绍如何通过命令行和图形化界面快速定位并释放被占用的端口&#xff0c;帮助你高效解决此类问题。​ 一、准…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...

英国云服务器上安装宝塔面板(BT Panel)

在英国云服务器上安装宝塔面板&#xff08;BT Panel&#xff09; 是完全可行的&#xff0c;尤其适合需要远程管理Linux服务器、快速部署网站、数据库、FTP、SSL证书等服务的用户。宝塔面板以其可视化操作界面和强大的功能广受国内用户欢迎&#xff0c;虽然官方主要面向中国大陆…...