当前位置: 首页 > news >正文

狗都能看懂的DBSCAN算法详解

文章目录

DBSCAN简介

DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种典型的无监督聚类算法。和K-means相比,不需要指定簇的个数,可以应用于各种非凸形状的数据,能够有效分离异常点,因此也常用于异常检测。

DBSCAN算法流程

DBSCAN通过检查数据集中的点的邻域来形成簇。其核心思想是密度可达性,即如果一个点在某个密度阈值内有足够多的邻居,它就会与这些邻居形成一个簇。具体地,DBSCAN依赖于两个主要参数:

  1. ϵ \epsilon ϵ:定义一个点的邻域的半径。
  2. MinPts:一个点在其邻域内必须包含的最少点数(包括点本身),以便被视为一个核心点

运行机制

DBSCAN算法的运行步骤如下:

  1. 标记所有点为未访问。
  2. 随机选择一个未访问的点P,并将其标记为已访问。
  3. 检查P的ε邻域:
    • 如果P的 ϵ \epsilon ϵ邻域内的点数大于或等于MinPts,则P被视为核心点,并以P为中心创建一个新簇。然后递归地将P的所有邻居也加入该簇。
    • 如果P的 ϵ \epsilon ϵ邻域内的点数小于MinPts,则P被标记为噪声点(后续可能会被归入其他簇)。
  4. 重复步骤2和3,直到所有点都被访问过

在这里插入图片描述

举个实例

现设 ϵ = 1 \epsilon = 1 ϵ=1 M i n P t s = 3 MinPts = 3 MinPts=3,即半径为1的情况下,需要有3个点在领域内才算是核心点。

  1. 任意选择一个点A,其半径圈内有3个符合条件的点,所以A是核心点,并标记为已访问的状态
  2. 在A的半径范围内任意选择一个点,继续进行半径圈扫描,即重复1的操作
  3. 经过n轮迭代之后,到达了B点,B点为圆心的范围内只有一个符合条件的点,虽然它和其他红色的点都是分到一个类里,但它是属于边界点而非核心点
  4. 再经过m轮迭代之后,红色点和黄色点都遍历完成后,我们只剩下N点没有访问过了
  5. 此时选择N点,它的半径圈内并没有任何点,它将被我们标记为异常点/噪声点

这时候我们提出几个点的名称定义:

  • 核心点:若点P的 ϵ \epsilon ϵ半径内至少包含 M i n P t s MinPts MinPts个样本(包括样本P),那么点P称核心点
  • 边界点:若点P在某个核心点P的半径范围内,但其半径范围内没有 M i n P t s MinPts MinPts个样本(包括样本P),则称为边界点
  • 噪声点:若点P既不属于核心点,也不属于边界点,则称该点位噪声点

根据点的分布情况,我们还可以给出几个概念:

  • 密度直达:一个点P1处在点P2的领域内,且P2为核心点,则称P1由P2密度直达
  • 密度可达:一个点P1处在点P2的领域内,且P1和P2均为核心点,则称P1的领域点由P2密度可达
  • 密度相连:如果P1和P2都不是核心点,且P1和P2都在一个簇内,则称P1和P2密度相连

DBSCAN算法特点

优点

  • 可以对任意形状的数据进行聚类,不需要指定分类的数量
  • 对异常点不敏感,可以找出独立的点
  • 聚类结果稳定,即算法选择哪个点都可以,最终聚类的结果一定是一致的

缺点

  • 样本数量较多时,时间消耗会变多,此时可以对搜索最近邻时建立的KD树或者球树进行规模限制来改进
  • 如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合

DBSCAN参数选取技巧

ϵ \epsilon ϵ的选取:找突变点

给定一组点集P(P1、P2…Pn),计算P1到其他所有点的距离,从小到大排序,例如P1到其他点的距离为:

  1. 0.1
  2. 0.11
  3. 0.12
  4. 0.3
  5. 0.35

那么由此可看出,从0.12之后就是比较大的距离变动,因此可以选0.12作为距离阈值。当然实际的选取需要结合多个点集的距离结果

MinPts的选取

视业务情况而定,但一般从小的开始选取,但不要小过2,如果MinPts=1的情况,那么就找不到异常点了

相关文章:

狗都能看懂的DBSCAN算法详解

文章目录 DBSCAN简介DBSCAN算法流程运行机制举个实例 DBSCAN算法特点DBSCAN参数选取技巧 ϵ \epsilon ϵ的选取:找突变点MinPts的选取 DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的…...

运维岗高危操作

序号 高危操作指令 可能存在风险 维护操作要求 1 rm –rf rm –rf是删除文件夹和里面附带内容的一种最快捷的方法,可能会文件误删,导致数据丢失 使用rm –rf命令时千万要小心,可以在.bashrc里面添加: alias rm ‘rm -i’ ,…...

【ajax基础02】URL详解

目录 一:什么是URL 二:URL组成 协议 ​编辑 域名(在url中必须写) 资源路径 三:URL查询参数 定义: 语法格式: 如何利用axios实现特定数据查询: 语法格式: 案例&#xff1a…...

MySQL 7种Join的定义图解示范结果(所有join类型)

文章目录 MySQL 7种Join的定义&图解&示范&结果(所有join类型)基本知识笛卡尔积 建表&填充数据1-Join不带条件account筛选 1-Inner Join 内连接不带条件account相同where筛选玩点特殊的 2-Left Join 左连接不带条件account筛选 3-Right J…...

在 Oracle Linux 8.9 上安装 FFmpeg 的完整指南

在 Oracle Linux 8.9 上安装 FFmpeg 的完整指南 在 Oracle Linux 8.9 上安装 FFmpeg 的完整指南准备工作安装步骤1. 更新系统2. 启用 EPEL 仓库3. 启用 RPM Fusion 仓库4. 安装 DNF 插件核心包5. 启用 CodeReady Builder 仓库6. 安装 FFmpeg7. 验证安装 可能遇到的问题注意事项…...

python爬虫之实现edge无头浏览器和规避检测

python爬虫之实现edge无头浏览器和规避检测 爬取百度网页源码但不打开浏览器 实现代码如下: #需求:实现edge无头浏览器和规避检测 from selenium import webdriver from time import sleep from selenium.webdriver.edge.options import Options# 实现…...

每天一个数据分析题(三百八十七)- 线性回归分析

下列关于线性回归分析中的残差(Residuals)的假设说法正确的是? A. 残差均值总是为零 B. 残差均值总是小于零 C. 残差均值总是大于零 D. 以上说法都不对 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取…...

Perl中的eval块:深入解析与应用

引言 Perl是一种功能强大的脚本语言,以其灵活性和强大的文本处理能力而闻名。在Perl编程中,eval块是一个非常重要的特性,它允许开发者捕获和处理异常,同时也提供了一种执行动态代码的方法。本文将详细探讨eval块的作用、用法以及…...

分享AI学习笔记之Python

当你说"抓取网站数据"时,通常指的是网络爬虫(web scraping)或网络抓取(web crawling)。Python提供了很多库可以帮助你实现这个功能,其中最常见的有requests(用于发送HTTP请求&#xf…...

多版本GCC安装及切换

目录 1 背景2 安装2.1 Ubuntu 20.042.2 Ubuntu 18.04 3 配置4 切换4.1 切换到版本94.2 切换到版本10 1 背景 最近在研究C20中的协程需要安装GCC版本10。用到GCC多版本切换,记录步骤。 2 安装 2.1 Ubuntu 20.04 运行如下命令安装两个版本编译器: sudo apt insta…...

Redis进阶 - 朝生暮死之Redis过期策略

概述 Redis 是一种常用的内存数据库,其所有的数据结构都可以设置过期时间,时间一到,就会自动删除。你可以想象 Redis 内部有一个死神,时刻盯着所有设置了过期时间的 key,寿命一到就会立即收割。 你还可以进一步站在死神…...

MySQL实训--原神数据库

原神数据库 er图DDL/DML语句查询语句存储过程/触发器 er图 DDL/DML语句 SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0;DROP TABLE IF EXISTS artifacts; CREATE TABLE artifacts (id int NOT NULL AUTO_INCREMENT,artifacts_name varchar(255) CHARACTER SET utf8 COLLATE …...

Retrieval-Augmented Generation for Large Language Models A Survey

Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 文章目录 Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 Abstract背景介绍 RAG概述原始RAG先进RAG预检索过程后检索过程 模块化RAGModules部分Patterns部分 RAG…...

【曦灵平台】深度体验百度智能云曦灵平台之数字人3.0、声音克隆、直播等功能,AI加持就是不一样,快来一起体验

目录 资产数字人 2D数字人克隆声音克隆 AI卡片更多功能总结推荐文章 资产 可进行人像与声音的定制,让数字人形象和声音成为我们的专属资产,用于后续的内容生产工作 数字人 这里拍摄的视频分辨率和帧率必须要确保是官方要求,这里博主通过第…...

如何使用GPT?初学者的指南

ChatGPT是一个非常先进的AI工具,它使用GPT-4架构,能够生成自然的语言回应。它的多功能性和理解复杂指令的能力,使得很多人用它来回答各种问题,就像用Google一样输入关键词。不过,ChatGPT还能做更多事情,下面…...

24年了 直播带货的未来如何?

32 个国家在取消电商, 那我国的电商呢,首先电商是不会被取缔的。直播电商会被严格的控制,比如有一家饼店,它线下的销售是 3000 万,线上抖音的销售是 5, 000 万。 这一类型小而精又专业的品牌企业,未来在抖…...

【神经网络】深入理解多层神经网络(深度神经网络

🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 深入理解多层神经网络&#x…...

CAS原理与JUC原子类

一、CAS基本原理 1、Unsafe类 (1)概念及作用:增强Java语言操作底层资源的能力,里面的方法多为native修饰的方法(基于C实现),不建议在代码中使用,不安全。 (2&#xff…...

【杂记-浅谈OSPF协议之RouterDeadInterval死区间隔】

OSPF协议之RouterDeadInterval死区间隔 一、RouterDeadInterval概述二、设置RouterDeadInterval三、RouterDeadInterval的重要性 一、RouterDeadInterval概述 RouterDeadInterval,即路由器死区间隔,它涉及到路由器如何在广播网络上发现和维护邻居关系。…...

【每日刷题】Day75

【每日刷题】Day75 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 1833. 雪糕的最大数量 - 力扣(LeetCode) 2. 面试题 17.14. 最小K个数 - 力扣…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...