当前位置: 首页 > news >正文

狗都能看懂的DBSCAN算法详解

文章目录

DBSCAN简介

DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种典型的无监督聚类算法。和K-means相比,不需要指定簇的个数,可以应用于各种非凸形状的数据,能够有效分离异常点,因此也常用于异常检测。

DBSCAN算法流程

DBSCAN通过检查数据集中的点的邻域来形成簇。其核心思想是密度可达性,即如果一个点在某个密度阈值内有足够多的邻居,它就会与这些邻居形成一个簇。具体地,DBSCAN依赖于两个主要参数:

  1. ϵ \epsilon ϵ:定义一个点的邻域的半径。
  2. MinPts:一个点在其邻域内必须包含的最少点数(包括点本身),以便被视为一个核心点

运行机制

DBSCAN算法的运行步骤如下:

  1. 标记所有点为未访问。
  2. 随机选择一个未访问的点P,并将其标记为已访问。
  3. 检查P的ε邻域:
    • 如果P的 ϵ \epsilon ϵ邻域内的点数大于或等于MinPts,则P被视为核心点,并以P为中心创建一个新簇。然后递归地将P的所有邻居也加入该簇。
    • 如果P的 ϵ \epsilon ϵ邻域内的点数小于MinPts,则P被标记为噪声点(后续可能会被归入其他簇)。
  4. 重复步骤2和3,直到所有点都被访问过

在这里插入图片描述

举个实例

现设 ϵ = 1 \epsilon = 1 ϵ=1 M i n P t s = 3 MinPts = 3 MinPts=3,即半径为1的情况下,需要有3个点在领域内才算是核心点。

  1. 任意选择一个点A,其半径圈内有3个符合条件的点,所以A是核心点,并标记为已访问的状态
  2. 在A的半径范围内任意选择一个点,继续进行半径圈扫描,即重复1的操作
  3. 经过n轮迭代之后,到达了B点,B点为圆心的范围内只有一个符合条件的点,虽然它和其他红色的点都是分到一个类里,但它是属于边界点而非核心点
  4. 再经过m轮迭代之后,红色点和黄色点都遍历完成后,我们只剩下N点没有访问过了
  5. 此时选择N点,它的半径圈内并没有任何点,它将被我们标记为异常点/噪声点

这时候我们提出几个点的名称定义:

  • 核心点:若点P的 ϵ \epsilon ϵ半径内至少包含 M i n P t s MinPts MinPts个样本(包括样本P),那么点P称核心点
  • 边界点:若点P在某个核心点P的半径范围内,但其半径范围内没有 M i n P t s MinPts MinPts个样本(包括样本P),则称为边界点
  • 噪声点:若点P既不属于核心点,也不属于边界点,则称该点位噪声点

根据点的分布情况,我们还可以给出几个概念:

  • 密度直达:一个点P1处在点P2的领域内,且P2为核心点,则称P1由P2密度直达
  • 密度可达:一个点P1处在点P2的领域内,且P1和P2均为核心点,则称P1的领域点由P2密度可达
  • 密度相连:如果P1和P2都不是核心点,且P1和P2都在一个簇内,则称P1和P2密度相连

DBSCAN算法特点

优点

  • 可以对任意形状的数据进行聚类,不需要指定分类的数量
  • 对异常点不敏感,可以找出独立的点
  • 聚类结果稳定,即算法选择哪个点都可以,最终聚类的结果一定是一致的

缺点

  • 样本数量较多时,时间消耗会变多,此时可以对搜索最近邻时建立的KD树或者球树进行规模限制来改进
  • 如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合

DBSCAN参数选取技巧

ϵ \epsilon ϵ的选取:找突变点

给定一组点集P(P1、P2…Pn),计算P1到其他所有点的距离,从小到大排序,例如P1到其他点的距离为:

  1. 0.1
  2. 0.11
  3. 0.12
  4. 0.3
  5. 0.35

那么由此可看出,从0.12之后就是比较大的距离变动,因此可以选0.12作为距离阈值。当然实际的选取需要结合多个点集的距离结果

MinPts的选取

视业务情况而定,但一般从小的开始选取,但不要小过2,如果MinPts=1的情况,那么就找不到异常点了

相关文章:

狗都能看懂的DBSCAN算法详解

文章目录 DBSCAN简介DBSCAN算法流程运行机制举个实例 DBSCAN算法特点DBSCAN参数选取技巧 ϵ \epsilon ϵ的选取:找突变点MinPts的选取 DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的…...

运维岗高危操作

序号 高危操作指令 可能存在风险 维护操作要求 1 rm –rf rm –rf是删除文件夹和里面附带内容的一种最快捷的方法,可能会文件误删,导致数据丢失 使用rm –rf命令时千万要小心,可以在.bashrc里面添加: alias rm ‘rm -i’ ,…...

【ajax基础02】URL详解

目录 一:什么是URL 二:URL组成 协议 ​编辑 域名(在url中必须写) 资源路径 三:URL查询参数 定义: 语法格式: 如何利用axios实现特定数据查询: 语法格式: 案例&#xff1a…...

MySQL 7种Join的定义图解示范结果(所有join类型)

文章目录 MySQL 7种Join的定义&图解&示范&结果(所有join类型)基本知识笛卡尔积 建表&填充数据1-Join不带条件account筛选 1-Inner Join 内连接不带条件account相同where筛选玩点特殊的 2-Left Join 左连接不带条件account筛选 3-Right J…...

在 Oracle Linux 8.9 上安装 FFmpeg 的完整指南

在 Oracle Linux 8.9 上安装 FFmpeg 的完整指南 在 Oracle Linux 8.9 上安装 FFmpeg 的完整指南准备工作安装步骤1. 更新系统2. 启用 EPEL 仓库3. 启用 RPM Fusion 仓库4. 安装 DNF 插件核心包5. 启用 CodeReady Builder 仓库6. 安装 FFmpeg7. 验证安装 可能遇到的问题注意事项…...

python爬虫之实现edge无头浏览器和规避检测

python爬虫之实现edge无头浏览器和规避检测 爬取百度网页源码但不打开浏览器 实现代码如下: #需求:实现edge无头浏览器和规避检测 from selenium import webdriver from time import sleep from selenium.webdriver.edge.options import Options# 实现…...

每天一个数据分析题(三百八十七)- 线性回归分析

下列关于线性回归分析中的残差(Residuals)的假设说法正确的是? A. 残差均值总是为零 B. 残差均值总是小于零 C. 残差均值总是大于零 D. 以上说法都不对 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取…...

Perl中的eval块:深入解析与应用

引言 Perl是一种功能强大的脚本语言,以其灵活性和强大的文本处理能力而闻名。在Perl编程中,eval块是一个非常重要的特性,它允许开发者捕获和处理异常,同时也提供了一种执行动态代码的方法。本文将详细探讨eval块的作用、用法以及…...

分享AI学习笔记之Python

当你说"抓取网站数据"时,通常指的是网络爬虫(web scraping)或网络抓取(web crawling)。Python提供了很多库可以帮助你实现这个功能,其中最常见的有requests(用于发送HTTP请求&#xf…...

多版本GCC安装及切换

目录 1 背景2 安装2.1 Ubuntu 20.042.2 Ubuntu 18.04 3 配置4 切换4.1 切换到版本94.2 切换到版本10 1 背景 最近在研究C20中的协程需要安装GCC版本10。用到GCC多版本切换,记录步骤。 2 安装 2.1 Ubuntu 20.04 运行如下命令安装两个版本编译器: sudo apt insta…...

Redis进阶 - 朝生暮死之Redis过期策略

概述 Redis 是一种常用的内存数据库,其所有的数据结构都可以设置过期时间,时间一到,就会自动删除。你可以想象 Redis 内部有一个死神,时刻盯着所有设置了过期时间的 key,寿命一到就会立即收割。 你还可以进一步站在死神…...

MySQL实训--原神数据库

原神数据库 er图DDL/DML语句查询语句存储过程/触发器 er图 DDL/DML语句 SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0;DROP TABLE IF EXISTS artifacts; CREATE TABLE artifacts (id int NOT NULL AUTO_INCREMENT,artifacts_name varchar(255) CHARACTER SET utf8 COLLATE …...

Retrieval-Augmented Generation for Large Language Models A Survey

Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 文章目录 Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 Abstract背景介绍 RAG概述原始RAG先进RAG预检索过程后检索过程 模块化RAGModules部分Patterns部分 RAG…...

【曦灵平台】深度体验百度智能云曦灵平台之数字人3.0、声音克隆、直播等功能,AI加持就是不一样,快来一起体验

目录 资产数字人 2D数字人克隆声音克隆 AI卡片更多功能总结推荐文章 资产 可进行人像与声音的定制,让数字人形象和声音成为我们的专属资产,用于后续的内容生产工作 数字人 这里拍摄的视频分辨率和帧率必须要确保是官方要求,这里博主通过第…...

如何使用GPT?初学者的指南

ChatGPT是一个非常先进的AI工具,它使用GPT-4架构,能够生成自然的语言回应。它的多功能性和理解复杂指令的能力,使得很多人用它来回答各种问题,就像用Google一样输入关键词。不过,ChatGPT还能做更多事情,下面…...

24年了 直播带货的未来如何?

32 个国家在取消电商, 那我国的电商呢,首先电商是不会被取缔的。直播电商会被严格的控制,比如有一家饼店,它线下的销售是 3000 万,线上抖音的销售是 5, 000 万。 这一类型小而精又专业的品牌企业,未来在抖…...

【神经网络】深入理解多层神经网络(深度神经网络

🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 深入理解多层神经网络&#x…...

CAS原理与JUC原子类

一、CAS基本原理 1、Unsafe类 (1)概念及作用:增强Java语言操作底层资源的能力,里面的方法多为native修饰的方法(基于C实现),不建议在代码中使用,不安全。 (2&#xff…...

【杂记-浅谈OSPF协议之RouterDeadInterval死区间隔】

OSPF协议之RouterDeadInterval死区间隔 一、RouterDeadInterval概述二、设置RouterDeadInterval三、RouterDeadInterval的重要性 一、RouterDeadInterval概述 RouterDeadInterval,即路由器死区间隔,它涉及到路由器如何在广播网络上发现和维护邻居关系。…...

【每日刷题】Day75

【每日刷题】Day75 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 1833. 雪糕的最大数量 - 力扣(LeetCode) 2. 面试题 17.14. 最小K个数 - 力扣…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

MySQL的pymysql操作

本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接:【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题:IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案:将编译的堆内存增加一点 位置:设置setting-》构建菜单build-》编译器Complier...

Java设计模式:责任链模式

一、什么是责任链模式? 责任链模式(Chain of Responsibility Pattern) 是一种 行为型设计模式,它通过将请求沿着一条处理链传递,直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者,…...