当前位置: 首页 > news >正文

Redis进阶 - 朝生暮死之Redis过期策略

在这里插入图片描述

概述

   Redis 是一种常用的内存数据库,其所有的数据结构都可以设置过期时间,时间一到,就会自动删除。你可以想象 Redis 内部有一个死神,时刻盯着所有设置了过期时间的 key,寿命一到就会立即收割。

image

  你还可以进一步站在死神的角度思考,会不会因为同一时间太多的 key 过期,以至于忙不过来。同时因为 Redis 是单线程的,收割的时间也会占用线程的处理时间,如果收割的太过于繁忙,会不会导致线上读写指令出现卡顿。所有在过期这件事上,Redis 非常小心。

一、Redis 数据过期

1.1 Redis中key的过期时间

  通过 EXPIRE key seconds 命令来设置数据的过期时间。返回1表明设置成功,返回0表明key不存在或者不能成功设置过期时间。在key上设置了过期时间后key将在指定的秒数后被自动删除。

127.0.0.1:6379> SETEX key 5 value
OK127.0.0.1:6379> ttl s
(integer) 5127.0.0.1:6379> GET key
"value"127.0.0.1:6379> GET key   ## 5 秒过后
(nil)

命令 TTL 用于返回给定键距离过期还有多长时间。注意:当key被DEL命令删除或者被SET、GETSET命令重置后与之关联的过期时间会被清除

  Redis 有四个命令可以设置键的生存时间(可以存活多久)和过期时间(什么时候到期),如下表所示:

命令说明
expire key seconds以秒为单位设置键的生存时间
pexpire key milliseconds以毫秒为单位设置键的生存时间
expireat key timestamp以秒为单位,设置键的过期 UNIX 时间戳
pexpireat key milliseconds-timestamp以毫秒为单位,设置键的过期 UNIX 时间戳

1.2 基于时间的过期策略

  • 在Redis中,可以使用EXPIRE和PEXPIRE命令为键设置生存时间,以秒或毫秒为单位。例如:

    # 设置多少秒后过期
    EXPIRE key seconds
    # 设置多少毫秒后过期
    PEXPIRE key milliseconds
    #  设置 key 过期时间的时间戳(unix timestamp) 以秒计
    EXPIREAT key timestamp
    # 设置 key 过期时间的时间戳(unix timestamp) 以毫秒计
    PEXPIREAT key milliseconds-timestamp
    
  • 可以使用TTL命令或PTTL命令来查看键的剩余生存时间(以秒或毫秒为单位)。例如:

    # 以秒为单位,返回给定 key 的剩余生存时间
    TTL key
    # 以毫秒为单位返回 key 的剩余的过期时间
    PTTL key
    
  • 可以使用PERSIST命令来取消键的生存时间,使其永久保存。例如:

    # 移除key的过期时间,key将保持永久
    PERSIST key
    

二、Redis数据过期策略

Redis的过期策略主要是通过定时删除、惰性删除和定期删除三种方式来管理键的生命周期。

数据过期策略
定时删除
定期删除
惰性删除
过期策略说明
定时删除为每个设置了过期时间的键创建一个定时器,一旦过期就立即删除。
但是这种方式可能会消耗大量的CPU资源,因此Redis默认不使用这种策略。
定期删除每隔一段时间随机抽查一些键,删除其中已经过期的键。
这种方式是前两种方式的折衷,结合了定时任务和惰性删除的优点,是Redis默认采用的策略。
惰性删除只有在访问键时,才会检查键是否过期,过期则删除。
这种方式可以最大程度地节省CPU资源,但可能会导致大量的空间浪费。

2.1 定时删除

  Redis 在设置键的过期时间时,创建一个定时事件,当过期时间到达时,由事件处理器自动执行键的删除操作。定时删除策略对内存是最友好的,因为它保证过期键会在第一时间被删除, 过期键所消耗的内存会立即被释放。但它对 CPU 时间是最不友好的,因为删除操作可能会占用大量的 CPU 时间,将 CPU 时间花在删除那些和当前任务无关的过期键上,从而影响缓存的响应时间和吞吐量,这种做法毫无疑问会是低效的,因此Redis默认不使用这种策略。

2.2 定期删除

  Redis 的定期删除策略是一种平衡的方法,它定时地检查 Redis 库中的过期数据,采用随机抽样的方法,根据过期数据的比例来调整删除的速度。过期数据的比例是指 Redis 在定期删除策略中,根据每次随机抽样的键中有多少是过期的来决定是否继续删除。如果过期的键比例超过 1/4,就继续抽样和删除。这样可以根据过期数据的密集程度来控制删除的频率,避免过多占用 CPU 资源或内存空间。
  Redis 会将每个设置了过期时间的 key 存入到一个单独的字典中,默认每秒进行 10 次过期检查一次数据库。每次检查数据库并不是遍历过期的所有 key,而是从数据库中随机抽取一定数量的 key 进行过期检查。接下来,详细说说 Redis 的定期删除的流程。

开始
随机抽取 20 个 key
删除已经过期的 key
判断执行时间
是否超过上限
stop
判断过期 key
比例超过 1/4

  此时,会有人问“至于为什么不扫描所有的 key?”,这个问题很简单,Redis 作为一个单线程系统,全面扫描所有键值对可能会大幅度地影响性能。因此,Redis 限制每次过期扫描的最大耗时,这个限制默认是 25ms。如果用户将操作超时设置得太短,比如 10ms,那么许多连接可能会由于超时而关闭,导致应用出现许多异常。此时,Redis 的慢查询日志可能并没有任何记录,因为慢查询记录的只是命令的处理时间,而不包括等待时间。当大量键值对在同一时刻过期时,Redis 会多次扫描过期字典,直到过期键的比例低于四分之一。这可能会导致短暂的系统卡顿,尤其在并发请求高的情况下,这可能引发所谓的缓存雪崩。

2.3 惰性删除

  与定期删除不同,懒惰删除策略并不会定时地去扫描和删除过期的键,而是在每次访问 key 时,才会判断该key是否已过期。若是过期则清除,并且删除的目标仅限于当前处理的键;如果没有过期,不做任何处理,然后返回正常的键值对给客户端。如下图所示:

开始
对 key 进行读写操作
判断 key
是否已过期
删除已过期 key
返回 null 给客户端
正常进行读写操作
返回数据客户端
结束

  惰性删除对比定期删除而言,可以节省处理器时间,因为只有在键被访问时,Redis 才会去检查并删除过期的键。这种策略在很多情况下都能有效地处理过期的键,因为很多过期的键可能永远都不会被访问,因此没有必要花费时间去删除它们。
  然而,惰性删除可能会导致过期的键占用内存空间。因为只有在键被访问时,Redis才会删除它,如果一个过期的键一直没有被访问,那么它就会一直占用内存空间,这在内存紧张的环境下可能会成为一个问题。举个例子, 对于一些按时间点来更新的数据, 比如日志(log), 在某个时间点之后, 对它们的访问就会大大减少, 如果大量的这些过期数据积压在数据库里面, 用户以为它们已经过期了(已经被删除了), 但实际上这些键却没有真正的被删除(内存也没有被释放), 那结果肯定是非常糟糕。

三、结语

  Redis 缓存的过期策略是保证缓存可靠性和性能的关键之一,通过设置键值对缓存、设置过期时间、取消过期时间和查看 Redis 内存使用情况等操作,可以实现对缓存的控制和管理。需要注意的是,在设置缓存过期时间时,应根据业务场景和数据类型来选择合适的时间。

在这里插入图片描述

相关文章:

Redis进阶 - 朝生暮死之Redis过期策略

概述 Redis 是一种常用的内存数据库,其所有的数据结构都可以设置过期时间,时间一到,就会自动删除。你可以想象 Redis 内部有一个死神,时刻盯着所有设置了过期时间的 key,寿命一到就会立即收割。 你还可以进一步站在死神…...

MySQL实训--原神数据库

原神数据库 er图DDL/DML语句查询语句存储过程/触发器 er图 DDL/DML语句 SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0;DROP TABLE IF EXISTS artifacts; CREATE TABLE artifacts (id int NOT NULL AUTO_INCREMENT,artifacts_name varchar(255) CHARACTER SET utf8 COLLATE …...

Retrieval-Augmented Generation for Large Language Models A Survey

Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 文章目录 Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 Abstract背景介绍 RAG概述原始RAG先进RAG预检索过程后检索过程 模块化RAGModules部分Patterns部分 RAG…...

【曦灵平台】深度体验百度智能云曦灵平台之数字人3.0、声音克隆、直播等功能,AI加持就是不一样,快来一起体验

目录 资产数字人 2D数字人克隆声音克隆 AI卡片更多功能总结推荐文章 资产 可进行人像与声音的定制,让数字人形象和声音成为我们的专属资产,用于后续的内容生产工作 数字人 这里拍摄的视频分辨率和帧率必须要确保是官方要求,这里博主通过第…...

如何使用GPT?初学者的指南

ChatGPT是一个非常先进的AI工具,它使用GPT-4架构,能够生成自然的语言回应。它的多功能性和理解复杂指令的能力,使得很多人用它来回答各种问题,就像用Google一样输入关键词。不过,ChatGPT还能做更多事情,下面…...

24年了 直播带货的未来如何?

32 个国家在取消电商, 那我国的电商呢,首先电商是不会被取缔的。直播电商会被严格的控制,比如有一家饼店,它线下的销售是 3000 万,线上抖音的销售是 5, 000 万。 这一类型小而精又专业的品牌企业,未来在抖…...

【神经网络】深入理解多层神经网络(深度神经网络

🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 深入理解多层神经网络&#x…...

CAS原理与JUC原子类

一、CAS基本原理 1、Unsafe类 (1)概念及作用:增强Java语言操作底层资源的能力,里面的方法多为native修饰的方法(基于C实现),不建议在代码中使用,不安全。 (2&#xff…...

【杂记-浅谈OSPF协议之RouterDeadInterval死区间隔】

OSPF协议之RouterDeadInterval死区间隔 一、RouterDeadInterval概述二、设置RouterDeadInterval三、RouterDeadInterval的重要性 一、RouterDeadInterval概述 RouterDeadInterval,即路由器死区间隔,它涉及到路由器如何在广播网络上发现和维护邻居关系。…...

【每日刷题】Day75

【每日刷题】Day75 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 1833. 雪糕的最大数量 - 力扣(LeetCode) 2. 面试题 17.14. 最小K个数 - 力扣…...

文件管理器加载缓慢-禁用文件类型自动发现功能

文件管理器加载缓慢-禁用文件类型自动发现功能 右键“Shell”项,选择新建“字符串值” “FolderType”,数值为 NotSpecified。...

.[nicetomeetyou@onionmail.org].faust深入剖析勒索病毒及防范策略

引言: 在数字化时代,网络安全问题日益凸显,其中勒索病毒无疑是近年来网络安全的重大威胁之一。勒索病毒以其独特的加密机制和恶意勒索行为,给个人和企业带来了巨大的经济损失和数据安全风险。本文将从勒索病毒的传播方式、攻击链、…...

Ardupilot开源代码之ExpressLRS性能实测方法

Ardupilot开源代码之ExpressLRS性能实测方法 1. 源由2. 测试效果3. 测试配置4. 总结5. 参考资料6. 补充 1. 源由 之前一直在讨论ExpressLRS性能的问题,有理论、模拟、实测。 始终缺乏完整的同一次测试的测试数据集,本章节将介绍如何在Ardupilot上进行获…...

Transformers是SSMs:通过结构化状态空间对偶性的广义模型和高效算法(二)

文章目录 6、针对SSD模型的硬件高效算法6.1、对角块6.2、低秩块6.3、计算成本 7、Mamba-2 架构7.1、块设计7.2、序列变换的多头模式7.3、线性注意力驱动的SSD扩展8、系统优化对于SSMs8.1、张量并行8.2、序列并行性8.3、可变长度 9、实证验证9.1、合成任务:联想记忆9…...

Segment any Text:优质文本分割是高质量RAG的必由之路

AI应用开发相关目录 本专栏包括AI应用开发相关内容分享,包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧 适用于具备一定算法及Python使用基础的人群 AI应用开发流程概…...

IDEA 学习之 编译内存问题

目录 1. 正常的 IDEA build 日志2. 编译工具内存不足日志 (内存从小变大)2.1. 干脆无法启动2.2. Ant 任务执行报错2.3. 内存溢出:超出 GC 上限2.4. 内存溢出:超出 GC 上限,编译报错2.5. 内存溢出: 堆空间2.…...

如何将本地项目推送到gitee仓库

目录 为何用gitee管理自己项目: 如何将自己的项目推送到gitee仓库,步骤如下: 1.下载git 2.生成公钥 3.在gitee上添加公钥 4.在gitee上创建仓库 5.将本地项目推送到gitee仓库 为何用gitee管理自己项目: 1.可以使用多台电脑…...

产品经理基础入门

一、产品基础(需求收集、需求管理、需求分析、结构图、流程图、原型、PRD文档、用户画像、后台的角色管理) 产品经理定义: 1.市场分析:找准市场方向,确定哪个市场是值得进入的。 2.用户分析:针对目标市场…...

五子棋纯python手写,需要的拿去

import pygame,sys from pygame import * pygame.init()game pygame.display.set_mode((600,600)) gameover False circlebox [] # 棋盘坐标点存储 box [] def xy():for x in range(0,800//40): for y in range(0,800//40): box.append((x*40,y*40)) xy() defaultColor wh…...

C# Winform按钮避免重复点击以及解决WinForm中设置Enabled=False为什么还会响应Click事件

1、C# Winform按钮避免重复点击 代码如下 btn.Enablefalse; //执行任务的函数或代码 btn.Enabletrue; 在btn.Enabletrue前添加Application.DoEvents(); 就是让应用程序的消息队列自动走完(即在按钮为Ture前清空消息队列)。 2、解决WinForm中设置Enabl…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...