当前位置: 首页 > news >正文

操作符详解(上) (C语言)

操作符详解(上)

  • 一. 进制转换
    • 1. 二进制
    • 2. 二进制的转换
  • 二. 原码 补码 反码
  • 三. 操作符的分类
  • 四. 结构成员访问操作符
    • 1. 结构体的声明
    • 2. 结构体成员访问操作符

一. 进制转换

1. 二进制

在学习操作符之前,我们先了解一些2进制、8进制、10进制等的问题,我们在平时的学习中经常听到关于进制转换的问题,其实就是数字的表达形式不同,比如我们将数字15用不同的进制表示出来:在这里插入图片描述
(另外16进制前面加的是0x,8进制前面加的是0)
我们重点介绍一下二进制:
首先我们还是得从10进制讲起,其实10进制是我们⽣活中经常使用的,我们已经形成了很多尝试:
• 10进制中满10进1
• 10进制的数字每一位都是0~9的数字组成
其实二进制也是一样的
• 2进制中满2进1
• 2进制的数字每⼀位都是0~1的数字组成
那么1101 就是二进制的数字了。

2. 二进制的转换

(1) 2进制转8进制:比如15的二进制是1111,那么换成8进制就是利用15除以8看每次的余数和商,那么8进制就是17,其实8进制的每⼀位是有权重的,8进制的数字从右向左是个位、⼗位、百位…,分别每⼀位的权重是80、81、82…那么15也就是80 *7+81 *1,这就是15从二进制转成了8进制。
(2) 10进制转2进制:道理是一样的,10进制的每⼀位是有权重的,10进制的数字从右向左是个位、⼗位、百位…,分别每⼀位的权重是 100 , 101 , 102…比如123用10进制表示就是123,而转为2进制:在这里插入图片描述

二. 原码 补码 反码

当我们掌握了2进制等的转换,我们就要了解一下计算机中对于整数的三种表现形式,即整数的原码、补码、反码有符号整数的三种表示方法均有符号位数值位两部分,2进制序列中,最高位的1位是被当做符号位,剩余的都是数值位。
符号位都是用0表示“正”,用1表示“负”。(一个整型是由四个字节组成,一个字节占8个bit位,所以一共由32个bit组成)
正整数的原、反、补码都相同
负整数的三种表示方法各不相同
原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
补码得到原码也是可以使用:取反,+1的操作。
比如:15的原码补码反码是00000000000000000000000000001111
而 -15的原码是10000000000000000000000000001111,反码11111111111111111111111111110000(符号位不变,其他位按位取反),补码是11111111111111111111111111110001(末尾加1,得2进1,反码加1就是补码)
对于整形来说:数据存放内存中其实存放的是补码。为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统⼀处理;同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

三. 操作符的分类

(1) 移位操作符:<<左移操作符 --------- >>右移操作符,注意移位操作符只能适用于整数!并且移动的是二进制位中的补码
下面展示一些 内联代码片

//左移操作符
int main()
{int a = 10;int b = a << 1;printf("%d %d", a, b);return 0;
}

在这里插入图片描述
对于左移操作符来说原理只有一种就是左边抛弃,右边补0在这里插入图片描述
对于右移操作符也是一样的都是移动的2进制中的补码,右移操作符有两种方式:左边用0填充,右边补0左边用原该值的符号位填充,右边丢弃

(2) 位操作符:&(按位与) |(按位或) ^(按位异或) ~(按位取反)
位操作符一般是由两个操作数来完成的,并且也只能用于整数。
&:对两个数的补码进行运算(一个0一个1是0,两个1才是1)
|: 也是补码进行运算(只要有1就是1,两个0才是0)
^: 相同为0相异为1(异或是支持交换律的)
~: 单个数字(按2进制的补码取反)
比如给大家举一个例子,不能创建临时变量(第三个变量),实现两个整数的交换。
下面展示一些 内联代码片

int main()
{int a = 3;int b = 9;a = a ^ b;b = a ^ b;a = a ^ b;printf("%d %d\n", a,b);return 0;
}

在也就用到了位操作符^,后面大家多对这些运算符号进行实践,也会发现它们的实用性和便捷感。

(3)单目操作符:! ++ – & * - ~
这些都是单个数字完成的,特点就是只有一个操作数,很多符号我们也都认识。
!: 对一个表达式取反操作,即如果表达式为真,则结果为假。
++ – : 比如1++就是1本身加上1等于2,1–就是1本身减去1等于0(但是需要注意的点是++放在1之前和1之后是不一样的)在这里插入图片描述
& :取地址操作符

  • :解引用操作符
    在单目操作符中只有 & 和 * 没有介绍,这2个操作符我们在后期学习指针的时候会详细的介绍。
    (4) 逗号表达式:1 exp1, exp2, exp3, …expN
    逗号表达式,就是⽤逗号隔开的多个表达式。逗号表达式,从左向右依次执行。整个表达式的结果是最后⼀个表达式的结果。
    (5) 下标访问[]、函数调用()

四. 结构成员访问操作符

1. 结构体的声明

什么结构体?在C语言中已经提供的内置类型比如char、short、int等,但是只有这些内置类型是不够的,所以增加了结构体这种自定义的数据类型。其实结构体就是一些值的集合,类型不一定相同。struct是结构体关键字。
结构体的声明: 在这里插入图片描述
在这里插入图片描述
下面展示一些 内联代码片

struct student
{//成员变量char name[20];int age;float score;	 
};int main()
{int a = 0;struct student s1;struct student s2;return 0;
}

上述代码就是结构体的创建,首先我们就使用struct创建了一个结构体,包括字符型、整型等,然后这就相当于一个类型了,再看我们下面的代码,就像int a一样我们使用struct student也创建变量s1、s2等,当然像代码中的变量属于局部变量,如果需要全局变量我们可以定义在函数的外部。另外我们可以直接在结构体定义的括号外面直接定义变量(也是全局变量)。

2. 结构体成员访问操作符

结构体成员的直接访问:结构体成员的直接访问是通过点操作符(.)访问的。点操作符接受两个操作数,使用方式:结构体变量.成员名在这里插入图片描述
结构体成员的间接访问:有时候我们得到的不是⼀个结构体变量,而是得到了⼀个指向结构体的指针。使用方式:结构体指针->成员名,如下所示:在这里插入图片描述
以上就是操作符的部分解析,下一部分我也会及时更新。

相关文章:

操作符详解(上) (C语言)

操作符详解&#xff08;上&#xff09; 一. 进制转换1. 二进制2. 二进制的转换 二. 原码 补码 反码三. 操作符的分类四. 结构成员访问操作符1. 结构体的声明2. 结构体成员访问操作符 一. 进制转换 1. 二进制 在学习操作符之前&#xff0c;我们先了解一些2进制、8进制、10进制…...

使用 audit2allow 工具添加SELinux权限的方法

1. audit2allow工具的使用 audit2allow 命令的作用是分析日志&#xff0c;并提供允许的建议规则或拒绝的建议规则。 1.1 audit2allow的安装 sudo apt-get install policycoreutilssudo apt install policycoreutils-python-utils 1.2 auditallow的命令 命令含义用法-v--ve…...

一文弄懂FPGA

一、FPGA简介 什么是FPGA&#xff1f; FPGA&#xff08;Field-Programmable Gate Array&#xff09;是一种可编程逻辑器件&#xff0c;可以在现场通过硬件描述语言&#xff08;HDL&#xff09;进行配置。它具有高度的灵活性和并行处理能力&#xff0c;广泛应用于通信、计算、…...

Rust 中使用 :: 这种语法的几种情况

文章目录 1. 访问模块成员&#xff1a;2. 访问关联函数或静态方法&#xff1a;3. 访问 trait 的关联类型或关联常量4. 指定泛型类型参数 1. 访问模块成员&#xff1a; mod utils {pub fn do_something() { /* ... */ } }let result utils::do_something();2. 访问关联函数或静…...

Ruby langchainrb gem and custom configuration for the model setup

题意&#xff1a;Ruby 的 langchainrb gem 以及针对模型设置的自定义配置 问题背景&#xff1a; I am working in a prototype using the gem langchainrb. I am using the module assistant module to implemente a basic RAG architecture. 我正在使用 langchainrb 这个 ge…...

高校新生如何选择最优手机流量卡?

一年一度的高考已经结束了&#xff0c;愿广大学子金榜题名&#xff0c;家长们都给孩子准备好了手机&#xff0c;那么手机流量卡应该如何选择呢&#xff1f; 高校新生在选择手机流量卡时&#xff0c;需要综合考量流量套餐、费用、网络覆盖、售后服务等多方面因素&#xff0c;以下…...

QT QML 生成二维码

Qt生成二维码 C++版 文章目录 步骤1:安装libqrencode步骤2:创建C++类生成二维码步骤3:将C++类与QML绑定步骤4:创建QML界面步骤5:配置项目文件总结在Qt QML中实现二维码生成,可以使用一个C++库来生成二维码,然后将生成的二维码图像传递给QML进行显示。一个常用的二维码生…...

IDEA中Maven--下载安装自己适配的版本---理解

Maven解释&#xff1a; Maven是一个强大的项目管理工具和构建工具&#xff0c;主要用于Java项目。它能够帮助开发团队管理项目的依赖、构建项目、发布文档和报告&#xff0c;并能够自动化许多重复的任务。 Maven的主要作用包括&#xff1a; 依赖管理&#xff1a;Maven能够管理…...

【osgEarth】Ubuntu 22.04 源码编译osgEarth 3.5

下载源代码 git clone --depth1 https://dgithub.xyz/gwaldron/osgearth -b osgearth-3.5 下载子模块 git submodule update --init 如果下载不过来&#xff0c;就手动修改下.git/config文件&#xff0c;将子模块的地址替换成加速地址 (base) yeqiangyeqiang-Default-string…...

ASP.NET Core 6.0 使用 资源过滤器和行为过滤器

1.AOP 面向切面编程 概念 AOP(Aspect-Oriented Programming,面向切面编程)是一种编程范式,旨在通过预定义的模式(即“切面”)对程序的横切关注点进行模块化。横切关注点是一个在多个应用模块中出现的概念,例如日志记录、事务管理、安全检查等。AOP允许开发者定义“切面”…...

电脑屏幕花屏怎么办?5个方法解决问题!

“我刚刚打开电脑就发现我的电脑屏幕出现了花屏的情况。这让我很困惑&#xff0c;我应该怎么解决这个问题呢&#xff1f;求帮助。” 在这个数字时代的浪潮中&#xff0c;电脑早已成为我们生活中不可或缺的一部分。然而&#xff0c;当你正沉浸在紧张的游戏对战中&#xff0c;或是…...

git 初基本使用-----------笔记

Git命令 下载git 打开Git官网&#xff08;git-scm.com&#xff09;&#xff0c;根据自己电脑的操作系统选择相应的Git版本&#xff0c;点击“Download”。 基本的git命令使用 可以在项目文件下右击“Git Bash Here” &#xff0c;也可以命令终端下cd到指定目录执行初始化命令…...

Redis-数据类型-Bit的基本操作-getbit-setbit-Bitmap

文章目录 0、Bitmaps&#xff08;位图&#xff09;1、查看redis是否启动2、通过客户端连接redis3、切换到db7数据库4、设置&#xff08;或覆盖&#xff09;一个键&#xff08;key&#xff09;的值&#xff08;value&#xff09;5、获取存储在给定键&#xff08;key&#xff09;…...

统信UOS上鼠标右键菜单中添加自定义内容

原文链接&#xff1a;统信UOS上鼠标右键菜单中添加自定义内容 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇关于在统信UOS桌面操作系统上鼠标右键菜单中添加自定义内容的文章。通过自定义鼠标右键菜单&#xff0c;可以大大提升日常操作的效率和便捷性。本文将详细…...

学习入门 chatgpt原理 一

学习文章&#xff1a;人人都能看懂的chatGpt原理课 笔记作为学习用&#xff0c;侵删 Chatph和自然语言处理 什么是ChatGpt ChatGPT&#xff08;Chat Generative Pre-training Transformer&#xff09; 是一个 AI 模型&#xff0c;属于自然语言处理&#xff08; Natural Lang…...

生命在于学习——Python人工智能原理(4.7)

四、Python的程序结构与函数 4.4 函数 函数能将代码划分为若干模块&#xff0c;每一个模块可以相对独立的实现某一个功能&#xff0c;函数有两个主要功能&#xff0c;分别是降低编程难度和实现代码复用&#xff0c;函数是一种功能抽象&#xff0c;复用它可以将一个复杂的大问…...

经典游戏案例:仿植物大战僵尸

学习目标&#xff1a;仿植物大战僵尸核心玩法实现 游戏画面 项目结构目录 部分核心代码 using System; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.SceneManagement; using Random UnityEngine.Random;public enum…...

[Day 18] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

強化學習與生成對抗網絡(GAN) 引言 強化學習 (Reinforcement Learning, RL) 和生成對抗網絡 (Generative Adversarial Networks, GANs) 是現代人工智能中的兩大關鍵技術。強化學習使得智能體可以通過與環境交互學習最佳行動策略&#xff0c;而生成對抗網絡則通過兩個相互競爭…...

【Mac】DMG Canvas for mac(DMG镜像制作工具)软件介绍

软件介绍 DMG Canvas 是一款专门用于创建 macOS 磁盘映像文件&#xff08;DMG&#xff09;的软件。它的主要功能是让用户可以轻松地设计、定制和生成 macOS 上的安装器和磁盘映像文件&#xff0c;以下是它的一些主要特点和功能。 主要特点和功能 1. 用户界面设计 DMG Canva…...

RAG分块方法 从固定大小到自然语言处理分块——深入研究文本分块技术

发掘文本分块-准确的搜索结果和更智能的语言模型背后的秘诀&#xff0c;通过了解如何有效地分块文本&#xff0c;我们可以改进索引文档、处理用户查询和利用搜索结果的方式。准备好揭开文本分块的秘密了吗? 一、了解分块 分块是一种旨在嵌入尽可能少噪音的内容&#xff0c;同…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...