当前位置: 首页 > news >正文

探索 LLamaWorker:基于LLamaSharp的.NET本地大模型服务

LLamaWorker 是一个基于 LLamaSharp 项目开发的 HTTP API 服务器。它提供与 OpenAI 兼容的 API,使得开发者可以轻松地将大型语言模型(LLM)集成到自己的应用程序中。

1. 背景

在人工智能领域,大型语言模型(LLM)正在以其强大的自然语言处理能力改变游戏规则。随着技术的进步,越来越多的开发者希望将这些模型集成到自己的应用程序中。为了满足这一需求,我开发了 LLamaWorker,一个基于 LLamaSharp 项目的 ASP.NET Web API 服务。LLamaWorker 提供了与 OpenAI 兼容的 API,可以方便地接入其他应用程序,例如 Semantic Kernel 等相关框架或是禅道AI助手等需要接入AI服务的应用。

LLamaWorker 项目地址:https://github.com/sangyuxiaowu/LLamaWorker?wt.mc_id=DT-MVP-5005195

2. LLamaWorker 的特色

LLamaWorker 的设计初衷是为了使开发者能够轻松、高效地将大型语言模型集成到各种应用中。以下是它的一些核心特性:

  • 兼容 OpenAI API:LLamaWorker 提供了与 OpenAI 类似的 API,使得从 OpenAI 平台迁移至使用自己托管的模型变得无缝且便捷。
  • 多模型支持:无论您的需求是文本生成、对话系统还是文本嵌入,LLamaWorker 都能够支持配置和切换不同的模型,满足您的不同场景需求。
  • 流式响应:对于大型响应内容,LLamaWorker 支持流式响应,极大提高了处理效率和用户体验。
  • 嵌入支持:除了文本生成和处理,LLamaWorker 还提供了文本嵌入功能,支持开启模型的嵌入生成,同时也支持转发嵌入请求到其他模型服务。
  • 对话模版:为了帮助开发者更快地实现应用,LLamaWorker 还提供了一些常见的对话模版。
  • 自动释放: 支持自动释放已加载模型。
  • API Key 认证: 支持 API Key 认证。
  • Gradio UI Demo: 提供了一个基于 Gradio.NET 的 UI 演示。

3. 快速开始

LLamaWorker 主要面向 .NET 开发者,要开始使用 LLamaWorker,您只需要几个简单的步骤:

  1. 克隆仓库到本地
git clone https://github.com/sangyuxiaowu/LLamaWorker.git
  1. 进入项目目录
cd LLamaWorker
  1. 根据您的需求选择项目文件。项目提供了三个版本的项目文件:
  • LLamaWorker:适用于 CPU 环境。
  • LLamaWorker_Cuad11:适用于搭载 CUDA 11 的 GPU 环境。
  • LLamaWorker_Cuad12:适用于搭载 CUDA 12 的 GPU 环境。

选择适合您环境的项目文件进行下一步。

  1. 安装依赖项
dotnet restore LLamaWorker\LLamaWorker.csproj

如果您使用的是 CUDA 版本,请替换项目文件名。

  1. 修改配置文件 appsettings.json。默认配置已包含一些常见的开源模型配置,您只需按需修改模型文件路径(ModelPath)即可。

  2. 启动服务器

dotnet run --project LLamaWorker\LLamaWorker.csproj

如果您使用的是 CUDA 版本,请替换项目文件名。

如果你以调试模式启动,即可在浏览器中打开 swagger 页面查看 API 文档。

请添加图片描述

4. 配件文件介绍

LLamaWorker 配置文件内容如下:

{"AutoReleaseTime": 0,"ApiKey":"","LLmModelSettings": [],"EmbedingForward": "http://127.0.0.1:5000/embeddings"
}
  • AutoReleaseTime:自动释放时间,分钟。0 表示不自动释放。
  • ApiKey :API 密钥,默认为空,即不需要 API 密钥。
  • LLmModelSettings:模型配置。
  • EmbedingForward:嵌入转发地址。

在 LLamaWorker 项目的 appsettings.json 已经提供了一些常见的开源模型配置文件,您可以根据自己的需求选择合适的模型,以下是 Qwen2 的配置示例:

{"Name": "qwen2_7b","Description": "通义千问 v2 7b instruct q5_k_m","Version": "2","WebSite": "https://github.com/QwenLM/Qwen2",// 系统角色提示词,未指定时使用默认配置,可配置为空,则不自动添加"SystemPrompt": "You are a helpful assistant",// LLm ModelParams, LLamaSharp 的模型参数"ModelParams": {"ModelPath": "H:\\workspace\\gpt\\models\\qwen2-7b-instruct-q5_k_m.gguf","ContextSize": 32768,"Seed": 1337,"GpuLayerCount": 50,"FlashAttention": true, // 是否启用闪存注意力,注意 qwen2 模型需要启用"Embeddings": true // 是否启用嵌入},"AntiPrompts": [ "<|im_start|>", "<|im_end|>" ],"WithTransform": { // 对话模版选择类"HistoryTransform": "LLamaWorker.Transform.BaseHistoryTransform","OutputTransform": "LLamaWorker.Transform.BaseTextStreamTransform"}
}

5. API 参考

LLamaWorker 除了提供OpenAI常用的chatcompletionsembeddings接口外,还提供了一些其他接口,例如:

  • /models/info: 返回模型的基本信息
  • /models/config: 返回已配置的模型信息
  • /models/{modelId}/switch: 切换到指定模型

6. ChatUI

LLamaWorker 提供了一个基于 Gradio.NET 的 ChatUI 项目。通过这个项目你可以方便的与大模型进行交互测试。

在启用 LLamaWorker 项目后,你也可以通过运行以下命令尝试 Gradio UI 演示:

dotnet restore ChatUI\ChatUI.csproj
dotnet run --project ChatUI\ChatUI.csproj

然后打开浏览器访问 Gradio UI 演示。

请添加图片描述

6. 结语

LLamaWorker 项目的目标是为开发者社区提供一个高性能、易于使用的工具,以便更好地利用大型语言模型的能力。无论您是在构建聊天机器人、内容生成工具还是任何需要自然语言处理能力的应用,LLamaWorker 都能为您提供强大的支持。

我非常期待看到社区成员如何使用 LLamaWorker 来实现他们的创意和项目。如果您对 LLamaWorker 有任何反馈或建议,欢迎通过 GitHub Issues 或 Pull Requests 与我交流。让我们一起推动开源社区的发展,解锁更多的可能性!

相关文章:

探索 LLamaWorker:基于LLamaSharp的.NET本地大模型服务

LLamaWorker 是一个基于 LLamaSharp 项目开发的 HTTP API 服务器。它提供与 OpenAI 兼容的 API&#xff0c;使得开发者可以轻松地将大型语言模型&#xff08;LLM&#xff09;集成到自己的应用程序中。 1. 背景 在人工智能领域&#xff0c;大型语言模型&#xff08;LLM&#xf…...

Qt开发 | Qt控件 | QTabWidget基本用法 | QListWidget应用详解 | QScrollArea应用详解

文章目录 一、QTabWidget基本用法二、QListWidget应用详解1.列表模式1.1 基本操作1.2 添加自定义item1.3 如何添加右键菜单1.4 QListWidget如何删除item 2.图标模式 三、QScrollArea应用详解 一、QTabWidget基本用法 QTabWidget 是 Qt 框架中的一个类&#xff0c;它提供了一个选…...

2023年 AI APT可持续攻击的调查研究报告

总览 随着网络技术的不断发展&#xff0c;网络安全威胁也日益严峻。高级持续性威胁&#xff08;APT&#xff09;攻击以其目标明确、手段多样、隐蔽性强等特点&#xff0c;成为网络安全领域的重要挑战。本文分析2023年当前 APT 攻击的主要特点、活跃组织、攻击趋势以及漏洞利用…...

Leetcode 102.目标和

给定一个正整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 ‘’ 或 ‘-’ &#xff0c;然后串联起所有整数&#xff0c;可以构造一个 表达式 &#xff1a; 例如&#xff0c;nums [2, 1] &#xff0c;可以在 2 之前添加 ‘’ &#xff0c;在 1 之前添加 ‘-’ &…...

LLM AI工具和Delphi名称的起源

LLM AI工具和Delphi名称的起源 使用ChatGPT&#xff0c;直接或通过微软工具&#xff0c;以及其他基于llm的引擎。我很欣赏他们提供好的总结和比较的能力&#xff0c;并且还编写了一些样板代码。与此同时&#xff0c;当你问一些重要的问题时&#xff0c;你会得到一些令人惊讶的好…...

打破数据分析壁垒:SPSS复习必备(十一)

一、方差分析 方差分析的应用条件如下&#xff1a; &#xff08;1&#xff09;独立&#xff0c;各组数据相互独立&#xff0c;互不相关&#xff1b; &#xff08;2&#xff09;正态&#xff1a;即各组数据符合正态分布&#xff1b; &#xff08;3&#xff09;方差齐性&…...

【十六】【QT开发应用】Menu菜单,contextMenuEvent,setContextMenuPolicy,addAction

在 Qt 框架中&#xff0c;QMenu 类用于创建和管理菜单。菜单是用户界面的一部分&#xff0c;可以包含多个选项或动作&#xff0c;用户可以选择这些选项来执行特定的功能。菜单通常显示在菜单栏、上下文菜单&#xff08;右键菜单&#xff09;或工具栏中。 基本用法 创建菜单对象…...

华为DCN技术:M-LAG

M-LAG&#xff08;Multichassis Link Aggregation Group&#xff09;即跨设备链路聚合组&#xff0c;是一种实现跨设备链路聚合的机制。M-LAG主要应用于普通以太网络、VXLAN和IP网络的双归接入&#xff0c;可以起到负载分担或备份保护的作用。相较于另一种常见的可靠性接入技术…...

k8s持久化之emptyDir使用

目录 概述实践代码 概述 理解emptyDir使用&#xff0c;是后续k8s持久化进阶&#xff0c;高阶使用的基础。 实践 代码 详细说明在代码中 # 缓存数据&#xff0c;可以让多个容器共享数据 # 删除 Pod 时&#xff0c;emptyDir 数据同步消失 # 定义 initContainer -> 下载数据…...

Java露营基地预约小程序预约下单系统源码

轻松开启户外探险之旅 &#x1f31f; 露营热潮来袭&#xff0c;你准备好了吗&#xff1f; 随着人们对户外生活的热爱日益增加&#xff0c;露营已成为许多人周末和假期的首选活动。但你是否曾因找不到合适的露营基地而烦恼&#xff1f;或是因为繁琐的预约流程而错失心仪的营地…...

七天速通javaSE:第四天 java方法

文章目录 前言一、什么是方法&#xff1f;二、方法的定义与调用1. 方法的定义2. 方法的调用3. 练习&#xff1a;定义比大小方法并调用 三、方法的重载四、递归五、可变参数拓展&#xff1a;命令行传递参数 前言 本章将学习java方法。 一、什么是方法&#xff1f; java方法是用…...

jupyter notebook的markdown语法不起作用

在这个界面编辑&#xff0c;发现markdown你编辑的是什么就是什么&#xff0c;不起作用&#xff0c;然而点一下&#xff1a; 右上角“Notebook转发”&#xff0c;就会单独跳出一个jupyter notebook的界面&#xff0c;此时就会奏效&#xff1a;...

Redis 学习笔记(2)

目录 1 Redis的持久化1.1 RDB持久化方案1.2 AOF持久化方案 2 Redis架构2.1 主从复制架构2.2 哨兵集群设计2.3 哨兵集群设计 3 Redis事务机制4 Redis过期策略与内存淘汰机制4.1 过期策略4.2 内存淘汰机制 5 Redis高频面试题4.1 缓存穿透4.2 缓存击穿4.3 缓存雪崩 1 Redis的持久化…...

快慢指针:删除有序数组中的重复项

题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 思路好想&#xff0c;代码实现不好想 class Solution {public int removeDuplicates(int[] nums) {int fast 1,slow 1;while(fast < nums.length){if(nums[fast] ! nums[fast-1]){nums[slow] nums[fast]…...

用户登录错误次数太多锁定账号

当用户登录验证码错误次数太多时&#xff0c;需要限制用户在10分钟之内不能再次登录。 限制方案&#xff1a; 1.通过Redis ZSet key可以设置为用户名&#xff0c;value可以设置为UUID&#xff0c;score设置为当前时间戳 每次用户登录时&#xff0c;通过 rangeByScore 查询对…...

tedsign vue3 web-端框架中封装一个验证码组件 以及对应node 接口逻辑说明

一个这样的组件 我直接上代码了 <template><t-loading size"small" :loading"loading" show-overlay><div class"container" click"refresh"><div v-if"svg" class"svg" v-html"svg&…...

探索Scala并发编程之巅:高效并行处理的艺术

标题&#xff1a;探索Scala并发编程之巅&#xff1a;高效并行处理的艺术 引言 在现代软件开发中&#xff0c;随着多核处理器的普及&#xff0c;编写能够充分利用硬件能力的并发程序变得至关重要。Scala&#xff0c;这门结合了面向对象和函数式编程特性的语言&#xff0c;提供…...

AudioLM: 音频生成的革命性模型

AudioLM: 音频生成的革命性模型 AudioLM是一种革命性的音频生成模型&#xff0c;它结合了深度学习和自然语言处理的先进技术&#xff0c;能够生成高质量、逼真的音频内容。本文将探讨AudioLM的基本原理、工作机制、应用场景以及对音频生成领域的影响和未来发展方向。 一、Aud…...

C++ Vector的模拟实现

vector的介绍 1. vector是表示可变大小数组的序列容器。 2. 就像数组一样&#xff0c;vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问&#xff0c;和数组一样高效。但是又不像数组&#xff0c;它的大小是可以动态改变的&#xff0c;而…...

Kubernetes之Controller详解

本文尝试从Kubernetes Controller的种类、交互逻辑、最佳实践、伪代码示例及历史演进5个方面对其进行详细阐述&#xff0c;希望对您有所帮助&#xff01; 一、Kubernetes Controller种类 Kubernetes Controller Manager 是 Kubernetes 集群的核心组件之一&#xff0c;负责管理…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...