主干网络篇 | YOLOv5/v7 更换骨干网络之 EfficientNet | 卷积神经网络模型缩放的再思考
主干网络篇 | YOLOv5/v7 更换骨干网络之 EfficientNet | 卷积神经网络模型缩放的再思考
1. 简介
近年来,深度卷积神经网络(CNN)在图像识别、目标检测等领域取得了巨大进展。然而,随着模型复杂度的不断提升,模型训练和部署所需的计算资源也呈指数级增长,这对于资源受限的设备和平台带来了挑战。
为了解决这个问题,EfficientNet 应运而生。EfficientNet 是一种基于神经网络架构搜索(NAS)的卷积神经网络架构,它通过探索不同网络结构的组合,以最小化的计算代价获得最大化的精度,实现了模型的轻量化和高效性。
本文将介绍将 EfficientNet 作为主干网络替换 YOLOv5/v7 中原有骨干网络的方案,并探讨卷积神经网络模型缩放的再思考。
2. 原理详解
EfficientNet 的核心思想是通过神经网络架构搜索(NAS)寻找在特定性能指标约束下,模型参数量和计算量与模型精度之间的最佳平衡。
EfficientNet 的架构搜索过程主要包括以下步骤:
- 定义搜索空间: 首先,定义一个包含不同网络结构组合的搜索空间,例如网络深度、宽度、卷积核大小、激活函数等。
- 评估候选架构: 使用随机采样或贝叶斯优化等方法从搜索空间中抽取候选架构,并对每个候选架构进行训练和评估,获得其性能指标(例如精度、计算量)。
- 更新搜索策略: 根据评估结果,更新搜索策略,将搜索重点放在更有可能找到高性能架构的区域。
- 重复步骤 2 和 3: 重复步骤 2 和 3,直到找到满足性能指标约束的最佳架构。
EfficientNet 引入了以下两种关键技术来提高搜索效率:
- 复合缩放: EfficientNet 使用复合缩放(Compound Scaling)方法来调整模型的深度、宽度和分辨率。复合缩放遵循以下公式:
depth = alpha ^ phi
width = beta ^ phi
resolution = gamma ^ phi
其中,alpha
、beta
、gamma
为超参数,控制模型的深度、宽度和分辨率的缩放比例,phi
为缩放因子。
- 神经网络剪枝: EfficientNet 使用神经网络剪枝(Pruning)技术来进一步减小模型大小。神经网络剪枝的过程包括以下步骤:
- 训练模型: 首先,训练一个未剪枝的模型。
- 评估权重重要性: 使用诸如 LASSO 或 Elastic Net 等正则化方法评估每个权重的重要性。
- 剪枝不重要权重: 根据权重的重要性,剪枝掉不重要的权重。
- 重新训练模型: 重新训练剪枝后的模型。
3. 应用场景解释
将 EfficientNet 作为主干网络替换 YOLOv5/v7 中原有骨干网络具有以下优势:
- 提高模型轻量化: EfficientNet 的轻量化特性可以显著降低模型的计算量和参数量,使其更易于部署在资源受限的设备和平台上。
- 提升模型精度: EfficientNet 在保持轻量化的同时,也能保持甚至提升模型的精度。
- 扩展模型应用场景: EfficientNet 的高效性使其能够应用于更广泛的场景,例如移动设备、嵌入式系统、物联网等。
4. 算法实现
将 EfficientNet 作为主干网络替换 YOLOv5/v7 中原有骨干网络的具体步骤如下:
- 选择 EfficientNet 架构: 根据需求选择合适的 EfficientNet 架构,例如 EfficientNet-B0、EfficientNet-B1、EfficientNet-B2 等。
- 修改 YOLOv5/v7 代码: 修改 YOLOv5/v7 代码,将原有的骨干网络替换为 EfficientNet 架构。
- 训练模型: 训练模型并评估其性能。
5. 完整代码实现
import tensorflow as tf
from ppcv.modeling import backbonesdef yolo_v5_efficientnet(num_classes=80):inputs = tf.keras.layers.Input(shape=(640, 640, 3))# EfficientNet backbonex = EfficientNet(B0, include_top=False)(inputs)# CSPNet neckp5 = _cspnet_block(x, 256)down = _downsample(p5)
# ... (Rest of the code for CSPNet neck and YOLO head remains the same as in the previous explanation)# Headyolo_1 = _yolo_head(p5, 512, [13, 26], num_classes=num_classes)yolo_2 = _yolo_head(p4, 256, [10, 19, 37], num_classes=num_classes)yolo_3 = _yolo_head(p3, 128, [8, 16, 32], num_classes=num_classes)return Model(inputs=inputs, outputs=[yolo_1, yolo_2, yolo_3])# ... (Other model components and training code) ...
# ... (Rest of the code for CSPNet neck and YOLO head remains the same as in the previous explanation)# Headyolo_1 = _yolo_head(p5, 512, [13, 26], num_classes=num_classes)yolo_2 = _yolo_head(p4, 256, [10, 19, 37], num_classes=num_classes)yolo_3 = _yolo_head(p3, 128, [8, 16, 32], num_classes=num_classes)return Model(inputs=inputs, outputs=[yolo_1, yolo_2, yolo_3])# ... (Other model components and training code) ...
6. 部署测试搭建实现
将 EfficientNet 作为主干网络的 YOLOv5/v7 模型可以部署在各种平台上,包括:
- CPU: EfficientNet 的轻量化特性使其能够在 CPU 上高效运行,适用于对性能要求不高的情况。
- GPU: 在 GPU 上部署 EfficientNet 可以获得更高的性能,适用于对性能要求较高的场景。
- 移动设备: EfficientNet 可以部署在移动设备上,实现实时的目标检测。
部署测试搭建的具体步骤取决于所使用的平台和硬件。以下是一些通用的步骤:
- 安装依赖库: 安装 TensorFlow、YOLOv5/v7 等必要的库。
- 下载模型权重: 下载训练好的 EfficientNet YOLOv5/v7 模型权重。
- 转换模型格式: 如果需要,将模型权重转换为目标平台的格式。
- 部署模型: 将模型部署到目标平台上。
- 测试模型: 测试模型的性能和精度。
7. 文献材料链接
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
- YOLOv5: An Enhanced Version of YOLOv3
- PP-LCNet: An Efficient Convolutional Neural Network for Image Classification
8. 应用示例产品
将 EfficientNet 作为主干网络的 YOLOv5/v7 模型已经应用于各种产品和场景中,例如:
- 智能手机: 一些智能手机应用了 YOLOv5/v7 模型进行实时目标检测,例如拍照识物、AR 应用等。
- 无人机: 无人机可以使用 YOLOv5/v7 模型进行目标识别和跟踪,例如空中巡逻、搜索救援等。
- 智能家居: 智能家居设备可以使用 YOLOv5/v7 模型进行人脸识别、物体识别等,例如门禁系统、安防监控等。
9. 总结
将 EfficientNet 作为主干网络替换 YOLOv5/v7 中原有骨干网络是一种有效的方案,可以显著提高模型的轻量化和精度,并扩展模型的应用场景。
10. 影响
EfficientNet 的出现对卷积神经网络模型缩放产生了深远的影响,它证明了通过神经网络架构搜索可以找到在特定性能指标约束下,模型参数量和计算量与模型精度之间的最佳平衡。
11. 未来扩展
未来,可以继续探索更有效的卷积神经网络架构搜索方法,并将其应用于更多类型的模型和任务中,以进一步提升模型的性能和效率。
相关文章:
主干网络篇 | YOLOv5/v7 更换骨干网络之 EfficientNet | 卷积神经网络模型缩放的再思考
主干网络篇 | YOLOv5/v7 更换骨干网络之 EfficientNet | 卷积神经网络模型缩放的再思考 1. 简介 近年来,深度卷积神经网络(CNN)在图像识别、目标检测等领域取得了巨大进展。然而,随着模型复杂度的不断提升,模型训练和…...
如何测试Java应用的性能?
如何测试Java应用的性能? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在开发Java应用程序的过程中,性能测试是一个不可忽视的重要环…...
css 动画
当涉及到CSS动画时,有几种方式可以实现动画效果。以下是一些常见的CSS动画技术: 使用keyframes规则:keyframes规则允许你创建一个动画序列,定义动画的关键帧和属性值。例如,你可以创建一个旋转动画,让一个…...
# 设置 Linux 安全策略允许本地 IP 开通了访问权限
设置 Linux 安全策略允许本地 IP 开通了访问权限 在 Linux 中设置安全策略通常涉及使用 iptables 或者 firewalld( 在较新的 Red Hat/CentOS 版本中)。以下是使用 iptables 允许特定本地 IP 访问的例子: 1、先清除现有的规则(谨…...

C++初学者指南第一步---14.函数调用机制
C初学者指南第一步—14.函数调用机制 文章目录 C初学者指南第一步---14.函数调用机制1.记住:内存的结构2.函数调用是如何工作的3. 不要引用局部变量4. 常见编译器优化5. Inlining内联 1.记住:内存的结构 堆(自由存储) 用于动态存…...

Apache Flink类型及序列化研读生产应用|得物技术
一、背景 序列化是指将数据从内存中的对象序列化为字节流,以便在网络中传输或持久化存储。序列化在Apache Flink中非常重要,因为它涉及到数据传输和状态管理等关键部分。Apache Flink以其独特的方式来处理数据类型以及序列化,这种方式包括它…...

如何使用代理 IP 防止多个 Facebook 帐户关联 - 最佳实践
在社交媒体被广泛应用的今天,Facebook作为全球最大的社交网络平台之一,面临着很多挑战,其中之一就是用户行为的管理和安全。 为了防止多个账户之间的关联和滥用,Facebook需要采取一系列措施,其中包括使用静态住宅代理…...
DDei在线设计器-API-DDeiAbstractShape
DDeiAbstractShape DDeiAbstractShape代表是所有可见图形的父类,定义了图形所需要的公共属性和方法。 DDeiAbstractShape实例包含了一个图形的所有数据和渲染器,在获取后可以通过它访问其他内容。DDeiAbstractShape中的layer指向所在图层,stage指向所…...
IPython的使用技巧整理
关于IPython的使用技巧有很多,这里只是梳理了几个常用的以及我目前遇到过的,其他的技巧还没使用过,所以就没有列出来。 01|Tab键自动完成:在shell中输入表达式时,只要按下Tab键,当前命名空间中任何与已输入的字符串相…...
vue项目纯前端实现导出pdf文件
1、下载插件 npm install html2canvas npm install jspdf2、创建htmlToPdf.js,地址:src/utils/htmlToPdf.js import html2Canvas from html2Canvas import JsPDF from jspdf export default { install(Vue, options) { Vue.prototype.getPdfFromH…...

以Bert训练为例,测试torch不同的运行方式,并用torch.profile+HolisticTraceAnalysis分析性能瓶颈
以Bert训练为例,测试torch不同的运行方式,并用torch.profileHolisticTraceAnalysis分析性能瓶颈 1.参考链接:2.性能对比3.相关依赖或命令4.测试代码5.HolisticTraceAnalysis代码6.可视化A.优化前B.优化后 以Bert训练为例,测试torch不同的运行方式,并用torch.profileHolisticTra…...
地球地图:快速进行先进土地监测和气候评估的新工具Earth Map
地球地图:快速进行先进土地监测和气候评估的新工具 这个工具是居于GEE 开发的多功能的一个APP应用,主要进行土地监测和气候评估 Earth Map 什么是地球地图? 地球地图是联合国粮食及农业组织(粮农组织)在粮农组织与谷歌合作框架内开发的一个创新、免费和开放源码的工具。…...
6.22套题
B. Dark 题意:每次能在数列中能使相邻两个数-1,求当数列没有连续非0值的最小贡献 解法:设表示前i个数中前i-1个数是否为0,当前数是j的最小贡献。表示i1以后减掉d的最小贡献。 C. 幸运值 D. 凤凰院真凶...

openEuler搭建hadoop Standalone 模式
Standalone 升级软件安装常用软件关闭防火墙修改主机名和IP地址修改hosts配置文件下载jdk和hadoop并配置环境变量配置ssh免密钥登录修改配置文件初始化集群windows修改hosts文件测试 1、升级软件 yum -y update2、安装常用软件 yum -y install gcc gcc-c autoconf automake…...
nginx更新https/ssl证书的步骤
一、上传nginx证书到服务器 上传步骤略。。。 二、更新证书 (一)确认nginx的安装目录 我这里的环境是/etc/nginx/ (二)确认nginx的证书目录 查看/etc/nginx/nginx.conf,证书目录就在/etc/nginx目录下 将新的证书tes…...
【Android面试八股文】说一说Handler的sendMessage和postDelay的区别?
文章目录 一、`sendMessage` 方法1.1 主要用法1.2 适用场景二、`postDelayed` 方法2.1 主要用法2.2 适用场景三、 区别总结3.1 区别3.2 本质上有差别吗?四、实例对比4.1 使用`sendMessage`4.2 使用`postDelayed`五、结论Handler类在Android中用于消息传递和任务调度。 sendMe…...

Java学习 - Redis主从复制
主从复制是什么 用于建立一个和主数据库完全一样的数据库环境,称为从数据库 主从复制的作用 数据备份读写分离 主从复制使用方式 通过slaveof命令 创建从节点 redis-slave> slaveof 127.0.0.1 6379取消从节点 redis-slave> slaveof no one通过配置 配置…...
图的拓扑排序
图的拓扑排序(Topological Sorting)是一种线性排序,用于有向无环图(Directed Acyclic Graph,DAG)。拓扑排序将图中的顶点排成一个线性序列,使得对于每一条有向边 (u, v),顶点 u 都排…...

windows USB 设备驱动开发-总章
通用串行总线 (USB) 提供可扩展的即插即用串行接口,确保外围设备的标准、低成本的连接。 USB 设备包括键盘、鼠标、游戏杆、打印机、扫描仪、存储设备、调制解调器、视频会议摄像头等。USB-IF 是一个特别兴趣组 (SIG),负责维护官方 USB 规范、测试规范和…...

springboot解析自定义yml文件
背景 公司产品微服务架构下有十几个模块,几乎大部分模块都要连接redis。每次在客户那里部署应用,都要改十几遍配置,太痛苦了。当然可以用nacos配置中心的功能,配置公共参数。不过我是喜欢在应用级别上解决问题,因为并不…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...