当前位置: 首页 > news >正文

Pandas中的数据转换[细节]

今天我们看一下Pandas中的数据转换,话不多说直接开始🎇

目录

一、⭐️apply函数应用

apply是一个自由度很高的函数

对于Series,它可以迭代每一列的值操作:

二、⭐️矢量化字符串

为什么要用str属性

替换和分割

提取子串

提取第一个匹配的子串

测试是否包含子串

生成哑变量

⭐️方法摘要 

函数应用


import pandas as pd
import numpy as np

一、⭐️apply函数应用

apply是一个自由度很高的函数
对于Series,它可以迭代每一列的值操作:
df = pd.read_csv('data/table.csv')
df.head()

df['Math'].apply(lambda x:str(x)+'!').head() #可以使用lambda表达式,也可以使用函数

 

💥对于DataFrame,它在默认axis=0下可以迭代每一个列操作: 

# def test(x):
#     print(x)
#     return x
# df.apply(test)#axis=0
# df.apply(lambda x:x.apply(lambda x:str(x)+'!')).head() #这是一个稍显复杂的例子,有利于理解apply的功能
temp_data = df[["Height", "Weight", "Math"]]
# temp_data# 生成一个表格,每列是原来列的最大值,最小值,以及均值

def transfor(x):# x是Seriesresult = pd.Series()result["max"] = x.max()result["min"] = x.min()result["avg"] = x.mean()return resulttemp_data.apply(transfor, axis=0)
# 按列来传入,一列就是一个x

 

def transfor(x):# x -> seriesbmi = x["Weight"]/(x["Height"]/100)**2x["bmi"] = bmireturn xtemp_data.apply(transfor, axis=1)# BMI =  # apply

Pandas中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 💥

二、⭐️矢量化字符串

为什么要用str属性

文本数据也就是我们常说的字符串,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。

index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name")data = {"age": [18, 30, np.nan, 40, np.nan, 30],"city": ["Bei Jing ", "Shang Hai ", "Guang Zhou", "Shen Zhen", np.nan, " "],"sex": [None, "male", "female", "male", np.nan, "unknown"],"birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"]
}user_info = pd.DataFrame(data=data, index=index)# 将出生日期转为时间戳
user_info["birth"] = pd.to_datetime(user_info.birth)
user_info

💯在对 Series 中每个元素处理时,我们可以使用apply 方法。

💯比如,我想要将每个城市都转为小写,可以使用如下的方式。

user_info.city.map(lambda x: x.lower())
AttributeError: 'float' object has no attribute 'lower'

💯错误原因是因为 float 类型的对象没有 lower 属性。这是因为缺失值(np.nan)属于float 类型。这时候我们的str属性操作来了,来看看如何使用吧~

# 将文本转为小写
user_info.city.str.lower()

可以看到,通过 `str` 属性来访问之后用到的方法名与 Python 内置的字符串的方法名一样。并且能够自动排除缺失值。我们再来试试其他一些方法。例如,统计每个字符串的长度。 

user_info.city.str.len()

替换和分割

使用 .srt 属性也支持替换与分割操作。

先来看下替换操作,例如:将空字符串替换成下划线。

user_info.city.str.replace(" ", "_")

🏹replace 方法还支持正则表达式,例如将所有开头为 S 的城市替换为空字符串。

user_info.city.str.replace("^S.*", " ")

🏹再来看下分割操作,例如根据空字符串来分割某一列

user_info.city.str.split(" ")

🏹分割列表中的元素可以使用 get[] 符号进行访问:

user_info.city.str.split(" ").str.get(1)

🏹设置参数 expand=True 可以轻松扩展此项以返回 DataFrame。

user_info.city.str.split(" ", expand=True)

提取子串

既然是在操作字符串,很自然,你可能会想到是否可以从一个长的字符串中提取出子串。答案是可以的。

提取第一个匹配的子串

extract 方法接受一个正则表达式并至少包含一个捕获组,指定参数 expand=True 可以保证每次都返回 DataFrame。

例如,现在想要匹配空字符串前面的所有的字母,可以使用如下操作:

user_info.city.str.extract("(\w+)\s+", expand=True)

如果使用多个组提取正则表达式会返回一个 DataFrame,每个组只有一列。

例如,想要匹配出空字符串前面和后面的所有字母,操作如下:

user_info.city.str.extract("(\w+)\s+(\w+)", expand=True)

测试是否包含子串

除了可以匹配出子串外,我们还可以使用 contains 来测试是否包含子串。例如,想要测试城市是否包含子串 “Zh”。

user_info.city.str.contains("Zh")

当然了,正则表达式也是支持的。例如,想要测试是否是以字母 “S” 开头。

user_info.city.str.contains("^S")

生成哑变量

这是一个神奇的功能,通过 get_dummies 方法可以将字符串转为哑变量,sep 参数是指定哑变量之间的分隔符。来看看效果吧。

user_info.city.str.get_dummies(sep=" ")

这样,它提取出了 Bei, Guang, Hai, Jing, Shang, Shen, Zhen, Zhou 这些哑变量,并对每个变量下使用 0 或 1 来表达。实际上与 One-Hot(狂热编码)是一回事。

⭐️方法摘要 

这里列出了一些常用的方法摘要。

方法描述
cat()连接字符串
split()在分隔符上分割字符串
rsplit()从字符串末尾开始分隔字符串
get()索引到每个元素(检索第i个元素)
join()使用分隔符在系列的每个元素中加入字符串
get_dummies()在分隔符上分割字符串,返回虚拟变量的DataFrame
contains()如果每个字符串都包含pattern / regex,则返回布尔数组
replace()用其他字符串替换pattern / regex的出现
repeat()重复值(s.str.repeat(3)等同于x * 3 t2 >)
pad()将空格添加到字符串的左侧,右侧或两侧
center()相当于str.center
ljust()相当于str.ljust
rjust()相当于str.rjust
zfill()等同于str.zfill
wrap()将长长的字符串拆分为长度小于给定宽度的行
slice()切分Series中的每个字符串
slice_replace()用传递的值替换每个字符串中的切片
count()计数模式的发生
startswith()相当于每个元素的str.startswith(pat)
endswith()相当于每个元素的str.endswith(pat)
findall()计算每个字符串的所有模式/正则表达式的列表
match()在每个元素上调用re.match,返回匹配的组作为列表
extract()在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列
extractall()在每个元素上调用re.findall,为每个匹配返回一行DataFrame,为每个正则表达式捕获组返回一列
len()计算字符串长度
strip()相当于str.strip
rstrip()相当于str.rstrip
lstrip()相当于str.lstrip
partition()等同于str.partition
rpartition()等同于str.rpartition
lower()相当于str.lower
upper()相当于str.upper
find()相当于str.find
rfind()相当于str.rfind
index()相当于str.index
rindex()相当于str.rindex
capitalize()相当于str.capitalize
swapcase()相当于str.swapcase
normalize()返回Unicode标准格式。相当于unicodedata.normalize
translate()等同于str.translate
isalnum()等同于str.isalnum
isalpha()等同于str.isalpha
isdigit()相当于str.isdigit
isspace()等同于str.isspace
islower()相当于str.islower
isupper()相当于str.isupper
istitle()相当于str.istitle
isnumeric()相当于str.isnumeric
isdecimal()相当于str.isdecimal

函数应用

虽说 Pandas 为我们提供了非常丰富的函数,有时候我们可能需要自己定制一些函数,并将它应用到 DataFrame 或 Series。常用到的函数有:mapapplyapplymap

map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。

如果我想通过年龄判断用户是否属于中年人(30岁以上为中年),通过 map 可以轻松搞定它。

# 接收一个 lambda 函数
user_info.age.map(lambda x: "yes" if x >= 30 else "no")

又比如,我想要通过城市来判断是南方还是北方,我可以这样操作

user_info.citycity_map = {"BeiJing": "north","ShangHai": "south","GuangZhou": "south","ShenZhen": "south"
}# 传入一个 map
user_info.city.str.replace(" ","").map(city_map)

apply 方法既支持 Series,也支持 DataFrame,在对 Series 操作时会作用到每个值上,在对 DataFrame 操作时会作用到所有行或所有列(通过 axis 参数控制)。

# 对 Series 来说,apply 方法 与 map 方法区别不大。
user_info.age.apply(lambda x: "yes" if x >= 30 else "no")

applymap 方法针对于 DataFrame,它作用于 DataFrame 中的每个元素,它对 DataFrame 的效果类似于 apply 对 Series 的效果。

大家如果感觉可以的话,可以去做一些小练习~~

【练习一】 现有一份关于字符串的数据集,请解决以下问题:

(a)现对字符串编码存储人员信息(在编号后添加ID列),使用如下格式:“×××(名字):×国人,性别×,生于×年×月×日”

(b)将(a)中的人员生日信息部分修改为用中文表示(如一九七四年十月二十三日),其余返回格式不变。

(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

相关文章:

Pandas中的数据转换[细节]

今天我们看一下Pandas中的数据转换,话不多说直接开始🎇 目录 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: 二、⭐️矢量化字符串 为什么要用str属性 替换和分割 提取子串 …...

vue2面试题——路由

1. 路由的模式和区别 路由的模式:history,hash 区别: 1. 表象不同 history路由:以/为结尾,localhost:8080——>localhost:8080/about hash路由:会多个#,localhost:8080/#/——>localhost:…...

【AI应用探讨】—朴素贝叶斯应用场景

目录 文本分类 推荐系统 信息检索 生物信息学 金融领域 医疗诊断 其他领域 文本分类 垃圾邮件过滤:朴素贝叶斯被广泛用于垃圾邮件过滤任务,通过邮件中的文本内容来识别是否为垃圾邮件。例如,它可以基于邮件中出现的单词或短语的概率来…...

使用matlab的大坑,复数向量转置!!!!!变量区“转置变量“功能(共轭转置)、矩阵转置(默认也是共轭转置)、点转置

近期用verilog去做FFT相关的项目,需要用到matlab进行仿真然后和verilog出来的结果来做对比,然后计算误差。近期使用matlab犯了一个错误,极大的拖慢了项目进展,给我人都整emo了,因为怎么做仿真结果都不对,还…...

昇思25天学习打卡营第8天|保存与加载

1. 学习内容复盘 1.1 保存与加载 上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章…...

【vueUse库Animation模块各函数简介及使用方法】

vueUse库是一个专门为Vue打造的工具库,提供了丰富的功能,包括监听页面元素的各种行为以及调用浏览器提供的各种能力等。其中的Browser模块包含了一些实用的函数,以下是这些函数的简介和使用方法: vueUse库Sensors模块各函数简介及使用方法 vueUseAnimation函数1. useInter…...

汇川H5u小型PLC作modbusRTU从站设置及测试

目录 新建工程COM通讯参数配置协议选择协议配置 查看手册Modbus地址对应关系仿真测试 新建工程 新建一个H5U工程,不使用临时工程 系列选择H5U即可 COM通讯参数配置 协议选择 选择ModbusRTU从站 协议配置 端口号默认不可选择 波特率这里使用9600 数据长度&…...

基于Java的多元化智能选课系统-计算机毕业设计源码040909

摘 要 多元化智能选课系统使用Java语言的Springboot框架,采用MVVM模式进行开发,数据方面主要采用的是微软的Mysql关系型数据库来作为数据存储媒介,配合前台技术完成系统的开发。 论文主要论述了如何使用JAVA语言开发一个多元化智能选课系统&a…...

idea使用maven打包报错GBK不可映射字符

方法一:设置环境变量 打开“控制面板” > “系统和安全” > “系统”。点击“高级系统设置”。在“系统属性”窗口中,点击“环境变量”。在“系统变量”部分,点击“新建”,创建一个新的变量: 变量名:…...

解决Linux系统Root不能远程SSH登录

问题描述 在使用Linux主机或者开发板的时候远程SSH一直登录不上Root账户,只能登录其他账户。 问题解决 使用文本编辑器修改SSH的配置文件sshd_config。这个文件通常位于/etc/ssh/目录下。 sudo nano /etc/ssh/sshd_config在sshd_config文件中,找到Pe…...

【java】【控制台】【javaSE】 初级java家教管理系统控制台命令行程序项目

更多项目点击👆👆👆完整项目成品专栏 【java】【控制台】【javaSE】 初级java家教管理系统控制台命令行程序项目 获取源码方式项目说明:功能点数据库涉及到: 项目文件包含:项目运行环境 :截图其…...

(2024)豆瓣电影TOP250爬虫详细讲解和代码

(2024)豆瓣电影TOP250爬虫详细讲解和代码 爬虫目的 获取 https://movie.douban.com/top250 电影列表的所有电影的属性。并存储起来。说起来很简单就两步。 第一步爬取数据第二步存储 爬虫思路 总体流程图 由于是分页的,要先观察分页的规…...

am62x芯片安全类型确认(HS-SE, HS-FS or GP)

文章目录 芯片安全类型设置启动方式获取串口信息下载脚本运行脚本示例sk-am62x板卡参考芯片安全类型 AM62x 芯片有三个安全级别。 • GP:通用版本 • HS-FS:高安全性 - 现场安全型 • HS-SE:高安全性 - 强制安全型 在SD卡启动文件中,可以查看到, 但板上的芯片,到底是那…...

高通安卓12-在源码中查找应用的方法

1.通过搜索命令查找app 一般情况下,UI上看到的APP名称会在xml文件里面定义出来,如 搜索名字为WiGig的一个APP 执行命令 sgrep "WiGig" 2>&1|tee 1.log 将所有的搜索到的内容打印到log里面 Log里面会有一段内容 在它的前面是这段内…...

民用无人驾驶航空器运营合格证怎么申请

随着科技的飞速发展,无人机已经从遥不可及的高科技产品飞入了寻常百姓家。越来越多的人想要亲自操纵无人机,探索更广阔的天空。但是,飞行无人机可不是简单的事情,你需要先获得无人机许可证,也就是今天所要讲的叫民用无…...

[SD必备知识18]修图扩图AI神器:ComfyUI+Krita加速修手抽卡,告别低效抽卡还原光滑细腻双手,写真无需隐藏手势

🌹大家好!我是安琪!感谢大家的支持与鼓励。 krita-ai-diffusion简介 在AIGC图像生成领域的迅猛发展下,当前的AI绘图工具如Midjourney、Stable Diffusion都能够近乎完美的生成逼真富有艺术视觉效果的图像质量。然而,针…...

4.Spring Context 装载过程源码分析

Spring的ApplicationContext是Spring框架中的核心接口之一,它扩展了BeanFactory接口,提供了更多的高级特性,如事件发布、国际化支持、资源访问等。ApplicationContext的装载过程是Spring框架中非常重要的一个环节。以下是ApplicationContext装…...

mysql之数据存储单元

简介 在MySQL中,单行数据存储单元的大小并不是固定的,它取决于多种因素,如表结构中使用的数据类型以及所使用的存储引擎。 但是我们可以提供一些关于MySQL中典型行数据存储单元大小的一般性指引: 存储引擎 InnoDB(默认存储引擎) InnoDB中单行数据存储单元的大小通常在8-16…...

未来20年人工智能将如何塑造社会

照片由Brian McGowan在Unsplash上拍摄 更多资讯,请访问 2img.ai “人工智能会成为我们的救星还是我们的末日?” 几十年来,这个问题一直困扰着哲学家、科学家和科幻爱好者。 当我们踏上技术革命的边缘时,是时候透过水晶球&#x…...

Maven的依赖传递、依赖管理、依赖作用域

在Maven项目中通常会引入大量依赖,但依赖管理不当,会造成版本混乱冲突或者目标包臃肿。因此,我们以SpringBoot为例,从三方面探索依赖的使用规则。 1、 依赖传递 依赖是会传递的,依赖的依赖也会连带引入。例如在项目中…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

Robots.txt 文件

什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...