NeRF从入门到放弃4: NeuRAD-针对自动驾驶场景的优化
NeuRAD: Neural Rendering for Autonomous Driving
非常值得学习的一篇文章,几乎把自动驾驶场景下所有的优化都加上了,并且也开源了。
和Unisim做了对比,指出Unisim使用lidar指导采样的问题是lidar的垂直FOV有限,高处的东西打不到,使得lidar FOV外的效果不好。
1 整体框架

2 各项优化

-
CNN decoder
该方法最先是Unisim中提到的,主要优点是减少计算量,另外对于外插比较好。从该图消融实验的Scen. gen.为FID,表示新视角的和原视角的相似性,可以看出确实CNN对外插的影响最大。
采样时是基于patch的采样,假设一个pacht的大小是32x32个像素,降采样是。随机采样一个像素点作为中心点,以该点为中心采样96x32个像素,渲染得到的feature,经过反卷积上采样为原来的3倍,即96x96。
推理时,先把图片大小resize为原来的1/3,渲染得到1/3大小的feature,经过反卷积得到原图。
-
Rolling shutter
这是自动驾驶场景特殊的地方。
对相机和ldiar的扫描时间建模。相机的第一行和最后一行不是一个时间,lidar也是如此。相机高速运动的时候,一幅图里的每行像素的时间是不一样的,其相机原点也不一样。但是我们建模的时候,却认为一张图片里所有的像素都是同一个时间,也就是这一帧的位姿和时间戳。
所以作者为每条射线都额外加了时间t的预测,对每条Ray加入一个t,根据ego_motion,调整它们的原点。动态元素的位姿插值到每条ray的时间。
此处可看issue,需要注意,相机扫描也分为横向和纵向。
-
Apperance embedding
最早是在NeRF in wild里提到的,因为不同相机的曝光程度不同,每个相机通过一个mlp获得一个embeding。每个sensor学习一个embedding,渲染新视角时使用这些embedding。
-
ray drop probability and intensity using
返回点云是否击中的概率,以此来丢弃这束光线,如打到天空、玻璃上的,没有返回值。
-
SDF
SDF的方法最早是在NeuS被应用。什么是SDF,sign distance field,它可以刻画一个表面。他的好处是什么?
其用法是NeRF的MLP原本是预测每个点的density的,现在不直接预测density了,而是预测一个该点的sdf,然后通过一个计算公式转换成不透明度α,这里的β就是预测的该点的SDF值,初始值设成20,它是一个可学习的参数。

3 对比Unisim新视角下的效果
使用FID作为量化指标

4 其他
- 采样分为三种,背景、Acotr和天空。
在静态场末端和3公里外之间的视差(到传感器原点的距离上的一个)中对这些进行线性采样。也就是说原本每条射线采样32个点,最后一个点(也是最远的一个点)扩展到3000m,实际代码中这个距离是20000m
- 位姿优化:
加了位姿优化后psnr等值变低,这是因为位姿优化后位姿发生了变化,和ground truth的pose已经不一样,但是还要跟ground truth的图像做对比。本来就不是一个时刻的图片了,也就自然没有了可比性。
- 挑战性的场景:
- 夜晚。夜晚产生炫光,这些本不代表真正的geometroy。
- 刹车灯,信号灯,这些是随时间变化的,Nerf可能可以学习出这个关联关系。
相关文章:
NeRF从入门到放弃4: NeuRAD-针对自动驾驶场景的优化
NeuRAD: Neural Rendering for Autonomous Driving 非常值得学习的一篇文章,几乎把自动驾驶场景下所有的优化都加上了,并且也开源了。 和Unisim做了对比,指出Unisim使用lidar指导采样的问题是lidar的垂直FOV有限,高处的东西打不…...
docker环境部署ruoyi系统前后端分离项目
创建局域网 docker network create net-ry 安装Redis 1 安装 创建两个目录 mkdir -p /data/redis/{conf,data} 上传redis.conf文件到/data/redis/conf文件夹中 cd /data/redis/conf 3.2 配置redis.conf文件 配置redis.conf文件: redis.conf文件配置注意&…...
UI(二)控件
文章目录 PatternLockProgressQRCodeRadioRatingRichTextScollBarSearchSelectSlideSpanStepper和StepperItemTextTextAreaTextClockTextInputTextPickerTextTimerTimePickerToggleWeb PatternLock PatternLock是图案密码锁组件,以九宫格图案的方式输入密码&#x…...
【图像分类】Yolov8 完整教程 |分类 |计算机视觉
目标:用YOLOV8进行图像分类。 图像分类器。 学习资源:https://www.youtube.com/watch?vZ-65nqxUdl4 努力的小巴掌 记录计算机视觉学习道路上的所思所得。 1、文件结构化 划分数据集:train,val,test 知道怎么划分数据集很重要。 文件夹…...
PyCharm 2024.1最新变化
PyCharm 2024.1 版本带来了一系列激动人心的新功能和改进,以下是一些主要的更新亮点: Hugging Face 模型和数据集文档预览:在 PyCharm 内部快速获取 Hugging Face 模型或数据集的详细信息,通过鼠标悬停或使用 F1 键打开文档工具窗口来预览。 …...
金融行业专题|某头部期货基于 K8s 原生存储构建自服务数据库云平台
为了进一步提升资源交付效率,不少用户都将数据库应用从物理环境迁移到容器环境。而对于 Kubernetes 部署环境,用户不仅需要考虑数据库在性能方面的需求,还要为数据存储提供更安全、可靠的高可用保障。 近期,某头部期货机构基于 S…...
DELL服务器 OpenManage监控指标解读
监控易是一款专业的IT基础设施监控软件,通过SNMP等多种方式,实时监控服务器、网络设备等IT资源的各项性能指标。对于DELL服务器 OpenManage,监控易提供了全面的监控解决方案,确保服务器的稳定运行。 一、网络连通性监控ÿ…...
vscode下无法识别node、npm的问题
node : 无法将“node”项识别为 cmdlet、函数、脚本文件或可运行程序的名称 因为node是在cmd安装的,是全局安装的,并不是在这个项目里安装的。 解决方案: 1.在vscode的控制台,针对一个项目安装特定版本的node; 2.已经…...
C语言之字符串处理函数
文章目录 1 字符串处理函数1.1 输入输出1.1.1 输出函数puts1.1.2 输入函数gets 1.2 连接函数1.2.1 stract1.2.2 strncat 1.3 复制1.3.1 复制strcpy1.3.2 复制strncpy1.3.3 复制memcpy1.3.4 指定复制memmove1.3.5 指定复制memset1.3.6 新建复制strdup1.3.7 字符串设定strset 1.4…...
昇思25天学习打卡营第4天|onereal
今天学习的内容是:ResNet50迁移学习 以下内容拷贝至教程,实话实话看不懂,迷迷糊糊都运行jupyter里的代码。走完程序,训练生成了一些图片。 ResNet50迁移学习 在实际应用场景中,由于训练数据集不足,所以很少…...
restTemplate使用总结
1、配置类 Configuration public class RestTemplateConfig() {Beanpublic RestTemplate restTemplate(ClientHttpRequestFactory factory) {return new RestTemplate(factory);}Beanpublic ClientHttpRequestFactory simpleClientHttpRequestFactory() {HttpComponentsClient…...
【云服务器介绍】选择指南 腾讯云 阿里云全配置对比 搭建web 个人开发 app 游戏服务器
省流目录:适用于博客建站(2-4G)、个人开发/小型游戏[传奇/我的世界/饥荒](4-8G)、数据分析/大型游戏[幻兽帕鲁/雾锁王国]服务器(16-64G) 1.京东云-618专属活动 官方采购季专属活动地址&#x…...
PostgreSQL 高级SQL查询(三)
1. JOIN 操作 1.1 内连接(INNER JOIN) 内连接用于返回两个表中存在匹配关系的记录。基本语法如下: SELECT columns FROM table1 INNER JOIN table2 ON table1.column table2.column;例如,从 users 表和 orders 表中检索所有用…...
麒麟系统安装Redis
一、背景 如前文(《麒麟系统安装MySQL》)所述。 二、下载Redis源码 官方未提供麒麟系统的Redis软件,须下载源码编译。 下载地址:https://redis.io/downloads 6.2.14版本源码下载地址:https://download.redis.io/re…...
Java-方法引用
方法引用概念 把已经有的方法拿过来用,当做函数式接口中抽象方法的方法体 前提条件 1、引用处必须是函数式接口 2、被引用的方法必须已经存在 3、被引用方法的形参和返回值 需要跟抽象方法保持一致 4、被引用方法的功能要满足当前需求 方法引用格式示例 方…...
华为---配置基本的访问控制列表(ACL)
11、访问控制列表(ACL) 11.1 配置基本的访问控制列表 11.1.1 原理概述 访问控制列表ACL(Access Control List)是由permit或deny语句组成的一系列有顺序的规则集合,这些规则根据数据包的源地址、目的地址、源端口、目的端口等信息来描述。A…...
Apple Intelligence,我们能得到什么?(上)
苹果公司WWDC 2024发布会,苹果AI成为最吸睛的焦点。不过,苹果的AI不是大家口中的AI,而是苹果独有的概念:Apple Intelligence,苹果智能。 所谓Apple Intelligence,被定义为iPhone、iPad和Mac的个人智能系统…...
【数据库中的存储桶】
存储桶是对象存储系统中的一个核心概念,起源于Amazon S3(Simple Storage Service)并被其他对象存储解决方案(如MinIO、Google Cloud Storage等)广泛采用。在传统的文件系统中,我们通常使用目录和子目录来组…...
多选项卡的shiny
下面是一个包含多个选项卡的 Shiny 应用程序示例代码。在这个例子中,我们创建了一个包含三个选项卡的 Shiny 应用程序,每个选项卡中都有不同的内容。 library(shiny)# Define UI ui <- fluidPage(titlePanel("多选项卡 Shiny 应用"),tabse…...
Python项目Django框架发布相关
1.Nginx配置 server { listen 80; server_name 域名地址;location / { uwsgi_pass 0.0.0.0:4563;// 运行地址include uwsgi_params;} location /static{ // 静态文件路径alias /www/wwwroot/djserverproject/static;}}server { listen 443; server_name 域名地址;ssl_certific…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
