当前位置: 首页 > news >正文

NeRF从入门到放弃4: NeuRAD-针对自动驾驶场景的优化

NeuRAD: Neural Rendering for Autonomous Driving

非常值得学习的一篇文章,几乎把自动驾驶场景下所有的优化都加上了,并且也开源了。

和Unisim做了对比,指出Unisim使用lidar指导采样的问题是lidar的垂直FOV有限,高处的东西打不到,使得lidar FOV外的效果不好。

1 整体框架

在这里插入图片描述

2 各项优化

在这里插入图片描述

  1. CNN decoder

    该方法最先是Unisim中提到的,主要优点是减少计算量,另外对于外插比较好。从该图消融实验的Scen. gen.为FID,表示新视角的和原视角的相似性,可以看出确实CNN对外插的影响最大。

    采样时是基于patch的采样,假设一个pacht的大小是32x32个像素,降采样是。随机采样一个像素点作为中心点,以该点为中心采样96x32个像素,渲染得到的feature,经过反卷积上采样为原来的3倍,即96x96。

    推理时,先把图片大小resize为原来的1/3,渲染得到1/3大小的feature,经过反卷积得到原图。

  2. Rolling shutter

    这是自动驾驶场景特殊的地方。

    对相机和ldiar的扫描时间建模。相机的第一行和最后一行不是一个时间,lidar也是如此。相机高速运动的时候,一幅图里的每行像素的时间是不一样的,其相机原点也不一样。但是我们建模的时候,却认为一张图片里所有的像素都是同一个时间,也就是这一帧的位姿和时间戳。

    所以作者为每条射线都额外加了时间t的预测,对每条Ray加入一个t,根据ego_motion,调整它们的原点。动态元素的位姿插值到每条ray的时间。

    此处可看issue,需要注意,相机扫描也分为横向和纵向。

  3. Apperance embedding

    最早是在NeRF in wild里提到的,因为不同相机的曝光程度不同,每个相机通过一个mlp获得一个embeding。每个sensor学习一个embedding,渲染新视角时使用这些embedding

  4. ray drop probability and intensity using

    返回点云是否击中的概率,以此来丢弃这束光线,如打到天空、玻璃上的,没有返回值。

  5. SDF

    SDF的方法最早是在NeuS被应用。什么是SDF,sign distance field,它可以刻画一个表面。他的好处是什么?

    其用法是NeRF的MLP原本是预测每个点的density的,现在不直接预测density了,而是预测一个该点的sdf,然后通过一个计算公式转换成不透明度α,这里的β就是预测的该点的SDF值,初始值设成20,它是一个可学习的参数。

在这里插入图片描述

3 对比Unisim新视角下的效果

使用FID作为量化指标

在这里插入图片描述

4 其他

  1. 采样分为三种,背景、Acotr和天空。

​ 在静态场末端和3公里外之间的视差(到传感器原点的距离上的一个)中对这些进行线性采样。也就是说原本每条射线采样32个点,最后一个点(也是最远的一个点)扩展到3000m,实际代码中这个距离是20000m

  1. 位姿优化:

​ 加了位姿优化后psnr等值变低,这是因为位姿优化后位姿发生了变化,和ground truth的pose已经不一样,但是还要跟ground truth的图像做对比。本来就不是一个时刻的图片了,也就自然没有了可比性。

  1. 挑战性的场景:
    1. 夜晚。夜晚产生炫光,这些本不代表真正的geometroy。
    2. 刹车灯,信号灯,这些是随时间变化的,Nerf可能可以学习出这个关联关系。

相关文章:

NeRF从入门到放弃4: NeuRAD-针对自动驾驶场景的优化

NeuRAD: Neural Rendering for Autonomous Driving 非常值得学习的一篇文章,几乎把自动驾驶场景下所有的优化都加上了,并且也开源了。 和Unisim做了对比,指出Unisim使用lidar指导采样的问题是lidar的垂直FOV有限,高处的东西打不…...

docker环境部署ruoyi系统前后端分离项目

创建局域网 docker network create net-ry 安装Redis 1 安装 创建两个目录 mkdir -p /data/redis/{conf,data} 上传redis.conf文件到/data/redis/conf文件夹中 cd /data/redis/conf 3.2 配置redis.conf文件 配置redis.conf文件: redis.conf文件配置注意&…...

UI(二)控件

文章目录 PatternLockProgressQRCodeRadioRatingRichTextScollBarSearchSelectSlideSpanStepper和StepperItemTextTextAreaTextClockTextInputTextPickerTextTimerTimePickerToggleWeb PatternLock PatternLock是图案密码锁组件,以九宫格图案的方式输入密码&#x…...

【图像分类】Yolov8 完整教程 |分类 |计算机视觉

目标:用YOLOV8进行图像分类。 图像分类器。 学习资源:https://www.youtube.com/watch?vZ-65nqxUdl4 努力的小巴掌 记录计算机视觉学习道路上的所思所得。 1、文件结构化 划分数据集:train,val,test 知道怎么划分数据集很重要。 文件夹…...

PyCharm 2024.1最新变化

PyCharm 2024.1 版本带来了一系列激动人心的新功能和改进,以下是一些主要的更新亮点: Hugging Face 模型和数据集文档预览:在 PyCharm 内部快速获取 Hugging Face 模型或数据集的详细信息,通过鼠标悬停或使用 F1 键打开文档工具窗口来预览。 …...

金融行业专题|某头部期货基于 K8s 原生存储构建自服务数据库云平台

为了进一步提升资源交付效率,不少用户都将数据库应用从物理环境迁移到容器环境。而对于 Kubernetes 部署环境,用户不仅需要考虑数据库在性能方面的需求,还要为数据存储提供更安全、可靠的高可用保障。 近期,某头部期货机构基于 S…...

DELL服务器 OpenManage监控指标解读

监控易是一款专业的IT基础设施监控软件,通过SNMP等多种方式,实时监控服务器、网络设备等IT资源的各项性能指标。对于DELL服务器 OpenManage,监控易提供了全面的监控解决方案,确保服务器的稳定运行。 一、网络连通性监控&#xff…...

vscode下无法识别node、npm的问题

node : 无法将“node”项识别为 cmdlet、函数、脚本文件或可运行程序的名称 因为node是在cmd安装的,是全局安装的,并不是在这个项目里安装的。 解决方案: 1.在vscode的控制台,针对一个项目安装特定版本的node; 2.已经…...

C语言之字符串处理函数

文章目录 1 字符串处理函数1.1 输入输出1.1.1 输出函数puts1.1.2 输入函数gets 1.2 连接函数1.2.1 stract1.2.2 strncat 1.3 复制1.3.1 复制strcpy1.3.2 复制strncpy1.3.3 复制memcpy1.3.4 指定复制memmove1.3.5 指定复制memset1.3.6 新建复制strdup1.3.7 字符串设定strset 1.4…...

昇思25天学习打卡营第4天|onereal

今天学习的内容是:ResNet50迁移学习 以下内容拷贝至教程,实话实话看不懂,迷迷糊糊都运行jupyter里的代码。走完程序,训练生成了一些图片。 ResNet50迁移学习 在实际应用场景中,由于训练数据集不足,所以很少…...

restTemplate使用总结

1、配置类 Configuration public class RestTemplateConfig() {Beanpublic RestTemplate restTemplate(ClientHttpRequestFactory factory) {return new RestTemplate(factory);}Beanpublic ClientHttpRequestFactory simpleClientHttpRequestFactory() {HttpComponentsClient…...

【云服务器介绍】选择指南 腾讯云 阿里云全配置对比 搭建web 个人开发 app 游戏服务器

​省流目录:适用于博客建站(2-4G)、个人开发/小型游戏[传奇/我的世界/饥荒](4-8G)、数据分析/大型游戏[幻兽帕鲁/雾锁王国]服务器(16-64G) 1.京东云-618专属活动 官方采购季专属活动地址&#x…...

PostgreSQL 高级SQL查询(三)

1. JOIN 操作 1.1 内连接(INNER JOIN) 内连接用于返回两个表中存在匹配关系的记录。基本语法如下: SELECT columns FROM table1 INNER JOIN table2 ON table1.column table2.column;例如,从 users 表和 orders 表中检索所有用…...

麒麟系统安装Redis

一、背景 如前文(《麒麟系统安装MySQL》)所述。 二、下载Redis源码 官方未提供麒麟系统的Redis软件,须下载源码编译。 下载地址:https://redis.io/downloads 6.2.14版本源码下载地址:https://download.redis.io/re…...

Java-方法引用

方法引用概念 把已经有的方法拿过来用,当做函数式接口中抽象方法的方法体 前提条件 1、引用处必须是函数式接口 2、被引用的方法必须已经存在 3、被引用方法的形参和返回值 需要跟抽象方法保持一致 4、被引用方法的功能要满足当前需求 方法引用格式示例 方…...

华为---配置基本的访问控制列表(ACL)

11、访问控制列表(ACL) 11.1 配置基本的访问控制列表 11.1.1 原理概述 访问控制列表ACL(Access Control List)是由permit或deny语句组成的一系列有顺序的规则集合,这些规则根据数据包的源地址、目的地址、源端口、目的端口等信息来描述。A…...

Apple Intelligence,我们能得到什么?(上)

苹果公司WWDC 2024发布会,苹果AI成为最吸睛的焦点。不过,苹果的AI不是大家口中的AI,而是苹果独有的概念:Apple Intelligence,苹果智能。 所谓Apple Intelligence,被定义为iPhone、iPad和Mac的个人智能系统…...

【数据库中的存储桶】

存储桶是对象存储系统中的一个核心概念,起源于Amazon S3(Simple Storage Service)并被其他对象存储解决方案(如MinIO、Google Cloud Storage等)广泛采用。在传统的文件系统中,我们通常使用目录和子目录来组…...

多选项卡的shiny

下面是一个包含多个选项卡的 Shiny 应用程序示例代码。在这个例子中&#xff0c;我们创建了一个包含三个选项卡的 Shiny 应用程序&#xff0c;每个选项卡中都有不同的内容。 library(shiny)# Define UI ui <- fluidPage(titlePanel("多选项卡 Shiny 应用"),tabse…...

Python项目Django框架发布相关

1.Nginx配置 server { listen 80; server_name 域名地址;location / { uwsgi_pass 0.0.0.0:4563;// 运行地址include uwsgi_params;} location /static{ // 静态文件路径alias /www/wwwroot/djserverproject/static;}}server { listen 443; server_name 域名地址;ssl_certific…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...