当前位置: 首页 > news >正文

NeRF从入门到放弃4: NeuRAD-针对自动驾驶场景的优化

NeuRAD: Neural Rendering for Autonomous Driving

非常值得学习的一篇文章,几乎把自动驾驶场景下所有的优化都加上了,并且也开源了。

和Unisim做了对比,指出Unisim使用lidar指导采样的问题是lidar的垂直FOV有限,高处的东西打不到,使得lidar FOV外的效果不好。

1 整体框架

在这里插入图片描述

2 各项优化

在这里插入图片描述

  1. CNN decoder

    该方法最先是Unisim中提到的,主要优点是减少计算量,另外对于外插比较好。从该图消融实验的Scen. gen.为FID,表示新视角的和原视角的相似性,可以看出确实CNN对外插的影响最大。

    采样时是基于patch的采样,假设一个pacht的大小是32x32个像素,降采样是。随机采样一个像素点作为中心点,以该点为中心采样96x32个像素,渲染得到的feature,经过反卷积上采样为原来的3倍,即96x96。

    推理时,先把图片大小resize为原来的1/3,渲染得到1/3大小的feature,经过反卷积得到原图。

  2. Rolling shutter

    这是自动驾驶场景特殊的地方。

    对相机和ldiar的扫描时间建模。相机的第一行和最后一行不是一个时间,lidar也是如此。相机高速运动的时候,一幅图里的每行像素的时间是不一样的,其相机原点也不一样。但是我们建模的时候,却认为一张图片里所有的像素都是同一个时间,也就是这一帧的位姿和时间戳。

    所以作者为每条射线都额外加了时间t的预测,对每条Ray加入一个t,根据ego_motion,调整它们的原点。动态元素的位姿插值到每条ray的时间。

    此处可看issue,需要注意,相机扫描也分为横向和纵向。

  3. Apperance embedding

    最早是在NeRF in wild里提到的,因为不同相机的曝光程度不同,每个相机通过一个mlp获得一个embeding。每个sensor学习一个embedding,渲染新视角时使用这些embedding

  4. ray drop probability and intensity using

    返回点云是否击中的概率,以此来丢弃这束光线,如打到天空、玻璃上的,没有返回值。

  5. SDF

    SDF的方法最早是在NeuS被应用。什么是SDF,sign distance field,它可以刻画一个表面。他的好处是什么?

    其用法是NeRF的MLP原本是预测每个点的density的,现在不直接预测density了,而是预测一个该点的sdf,然后通过一个计算公式转换成不透明度α,这里的β就是预测的该点的SDF值,初始值设成20,它是一个可学习的参数。

在这里插入图片描述

3 对比Unisim新视角下的效果

使用FID作为量化指标

在这里插入图片描述

4 其他

  1. 采样分为三种,背景、Acotr和天空。

​ 在静态场末端和3公里外之间的视差(到传感器原点的距离上的一个)中对这些进行线性采样。也就是说原本每条射线采样32个点,最后一个点(也是最远的一个点)扩展到3000m,实际代码中这个距离是20000m

  1. 位姿优化:

​ 加了位姿优化后psnr等值变低,这是因为位姿优化后位姿发生了变化,和ground truth的pose已经不一样,但是还要跟ground truth的图像做对比。本来就不是一个时刻的图片了,也就自然没有了可比性。

  1. 挑战性的场景:
    1. 夜晚。夜晚产生炫光,这些本不代表真正的geometroy。
    2. 刹车灯,信号灯,这些是随时间变化的,Nerf可能可以学习出这个关联关系。

相关文章:

NeRF从入门到放弃4: NeuRAD-针对自动驾驶场景的优化

NeuRAD: Neural Rendering for Autonomous Driving 非常值得学习的一篇文章,几乎把自动驾驶场景下所有的优化都加上了,并且也开源了。 和Unisim做了对比,指出Unisim使用lidar指导采样的问题是lidar的垂直FOV有限,高处的东西打不…...

docker环境部署ruoyi系统前后端分离项目

创建局域网 docker network create net-ry 安装Redis 1 安装 创建两个目录 mkdir -p /data/redis/{conf,data} 上传redis.conf文件到/data/redis/conf文件夹中 cd /data/redis/conf 3.2 配置redis.conf文件 配置redis.conf文件: redis.conf文件配置注意&…...

UI(二)控件

文章目录 PatternLockProgressQRCodeRadioRatingRichTextScollBarSearchSelectSlideSpanStepper和StepperItemTextTextAreaTextClockTextInputTextPickerTextTimerTimePickerToggleWeb PatternLock PatternLock是图案密码锁组件,以九宫格图案的方式输入密码&#x…...

【图像分类】Yolov8 完整教程 |分类 |计算机视觉

目标:用YOLOV8进行图像分类。 图像分类器。 学习资源:https://www.youtube.com/watch?vZ-65nqxUdl4 努力的小巴掌 记录计算机视觉学习道路上的所思所得。 1、文件结构化 划分数据集:train,val,test 知道怎么划分数据集很重要。 文件夹…...

PyCharm 2024.1最新变化

PyCharm 2024.1 版本带来了一系列激动人心的新功能和改进,以下是一些主要的更新亮点: Hugging Face 模型和数据集文档预览:在 PyCharm 内部快速获取 Hugging Face 模型或数据集的详细信息,通过鼠标悬停或使用 F1 键打开文档工具窗口来预览。 …...

金融行业专题|某头部期货基于 K8s 原生存储构建自服务数据库云平台

为了进一步提升资源交付效率,不少用户都将数据库应用从物理环境迁移到容器环境。而对于 Kubernetes 部署环境,用户不仅需要考虑数据库在性能方面的需求,还要为数据存储提供更安全、可靠的高可用保障。 近期,某头部期货机构基于 S…...

DELL服务器 OpenManage监控指标解读

监控易是一款专业的IT基础设施监控软件,通过SNMP等多种方式,实时监控服务器、网络设备等IT资源的各项性能指标。对于DELL服务器 OpenManage,监控易提供了全面的监控解决方案,确保服务器的稳定运行。 一、网络连通性监控&#xff…...

vscode下无法识别node、npm的问题

node : 无法将“node”项识别为 cmdlet、函数、脚本文件或可运行程序的名称 因为node是在cmd安装的,是全局安装的,并不是在这个项目里安装的。 解决方案: 1.在vscode的控制台,针对一个项目安装特定版本的node; 2.已经…...

C语言之字符串处理函数

文章目录 1 字符串处理函数1.1 输入输出1.1.1 输出函数puts1.1.2 输入函数gets 1.2 连接函数1.2.1 stract1.2.2 strncat 1.3 复制1.3.1 复制strcpy1.3.2 复制strncpy1.3.3 复制memcpy1.3.4 指定复制memmove1.3.5 指定复制memset1.3.6 新建复制strdup1.3.7 字符串设定strset 1.4…...

昇思25天学习打卡营第4天|onereal

今天学习的内容是:ResNet50迁移学习 以下内容拷贝至教程,实话实话看不懂,迷迷糊糊都运行jupyter里的代码。走完程序,训练生成了一些图片。 ResNet50迁移学习 在实际应用场景中,由于训练数据集不足,所以很少…...

restTemplate使用总结

1、配置类 Configuration public class RestTemplateConfig() {Beanpublic RestTemplate restTemplate(ClientHttpRequestFactory factory) {return new RestTemplate(factory);}Beanpublic ClientHttpRequestFactory simpleClientHttpRequestFactory() {HttpComponentsClient…...

【云服务器介绍】选择指南 腾讯云 阿里云全配置对比 搭建web 个人开发 app 游戏服务器

​省流目录:适用于博客建站(2-4G)、个人开发/小型游戏[传奇/我的世界/饥荒](4-8G)、数据分析/大型游戏[幻兽帕鲁/雾锁王国]服务器(16-64G) 1.京东云-618专属活动 官方采购季专属活动地址&#x…...

PostgreSQL 高级SQL查询(三)

1. JOIN 操作 1.1 内连接(INNER JOIN) 内连接用于返回两个表中存在匹配关系的记录。基本语法如下: SELECT columns FROM table1 INNER JOIN table2 ON table1.column table2.column;例如,从 users 表和 orders 表中检索所有用…...

麒麟系统安装Redis

一、背景 如前文(《麒麟系统安装MySQL》)所述。 二、下载Redis源码 官方未提供麒麟系统的Redis软件,须下载源码编译。 下载地址:https://redis.io/downloads 6.2.14版本源码下载地址:https://download.redis.io/re…...

Java-方法引用

方法引用概念 把已经有的方法拿过来用,当做函数式接口中抽象方法的方法体 前提条件 1、引用处必须是函数式接口 2、被引用的方法必须已经存在 3、被引用方法的形参和返回值 需要跟抽象方法保持一致 4、被引用方法的功能要满足当前需求 方法引用格式示例 方…...

华为---配置基本的访问控制列表(ACL)

11、访问控制列表(ACL) 11.1 配置基本的访问控制列表 11.1.1 原理概述 访问控制列表ACL(Access Control List)是由permit或deny语句组成的一系列有顺序的规则集合,这些规则根据数据包的源地址、目的地址、源端口、目的端口等信息来描述。A…...

Apple Intelligence,我们能得到什么?(上)

苹果公司WWDC 2024发布会,苹果AI成为最吸睛的焦点。不过,苹果的AI不是大家口中的AI,而是苹果独有的概念:Apple Intelligence,苹果智能。 所谓Apple Intelligence,被定义为iPhone、iPad和Mac的个人智能系统…...

【数据库中的存储桶】

存储桶是对象存储系统中的一个核心概念,起源于Amazon S3(Simple Storage Service)并被其他对象存储解决方案(如MinIO、Google Cloud Storage等)广泛采用。在传统的文件系统中,我们通常使用目录和子目录来组…...

多选项卡的shiny

下面是一个包含多个选项卡的 Shiny 应用程序示例代码。在这个例子中&#xff0c;我们创建了一个包含三个选项卡的 Shiny 应用程序&#xff0c;每个选项卡中都有不同的内容。 library(shiny)# Define UI ui <- fluidPage(titlePanel("多选项卡 Shiny 应用"),tabse…...

Python项目Django框架发布相关

1.Nginx配置 server { listen 80; server_name 域名地址;location / { uwsgi_pass 0.0.0.0:4563;// 运行地址include uwsgi_params;} location /static{ // 静态文件路径alias /www/wwwroot/djserverproject/static;}}server { listen 443; server_name 域名地址;ssl_certific…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...