当前位置: 首页 > news >正文

[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器

前言

不是学电子出身的,这里很多东西是问了朋友…

模拟域中的一阶低通滤波器传递函数

模拟域中的一阶低通滤波器的传递函数可以表示为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

这是因为一阶低通滤波器的设计目标是允许低频信号通过,同时衰减高频信号。具体来说,它的频率响应特性决定了这个形式的传递函数。

1. 传递函数的来源

一阶低通滤波器的传递函数来源于它的微分方程描述。考虑一个简单的RC(电阻-电容)电路:

  • 电阻 R R R
  • 电容 C C C
    在这里插入图片描述

高通滤波器

对于高通滤波器电路(左图),我们有一个电容 C 1 C_1 C1 和一个电阻 R 1 R_1 R1

  1. 阻抗计算

    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电容和电阻的串联上。
    • 输出电压 V o u t V_{out} Vout 在电阻上。

使用分压公式:

V o u t = V i n ⋅ Z R Z R + Z C = V i n ⋅ R 1 R 1 + 1 j ω C 1 = V i n ⋅ R 1 ⋅ j ω C 1 1 + j ω R 1 C 1 V_{out} = V_{in} \cdot \frac{Z_R}{Z_R + Z_C} = V_{in} \cdot \frac{R_1}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{R_1 \cdot j\omega C_1}{1 + j\omega R_1 C_1} Vout=VinZR+ZCZR=VinR1+C11R1=Vin1+R1C1R1C1

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = j ω R 1 C 1 1 + j ω R 1 C 1 = s R 1 C 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{j\omega R_1 C_1}{1 + j\omega R_1 C_1} = \frac{s R_1 C_1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C1R1C1=1+sR1C1sR1C1

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = s / ω c 1 + s / ω c H(s) = \frac{s / \omega_c}{1 + s / \omega_c} H(s)=1+s/ωcs/ωc

低通滤波器

对于低通滤波器电路(右图),我们有一个电阻 R 1 R_1 R1 和一个电容 C 1 C_1 C1

  1. 阻抗计算

    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电阻和电容的串联上。
    • 输出电压 V o u t V_{out} Vout 在电容上。

使用分压公式:

V o u t = V i n ⋅ Z C Z R + Z C = V i n ⋅ 1 j ω C 1 R 1 + 1 j ω C 1 = V i n ⋅ 1 j ω R 1 C 1 + 1 V_{out} = V_{in} \cdot \frac{Z_C}{Z_R + Z_C} = V_{in} \cdot \frac{\frac{1}{j\omega C_1}}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{1}{j\omega R_1 C_1 + 1} Vout=VinZR+ZCZC=VinR1+C11C11=VinR1C1+11

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = 1 1 + j ω R 1 C 1 = 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega R_1 C_1} = \frac{1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C11=1+sR1C11

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = 1 1 + s / ω c H(s) = \frac{1}{1 + s / \omega_c} H(s)=1+s/ωc1

微分方程形式

这个电路的微分方程可以写为:

V o u t ( t ) = 1 R C ∫ − ∞ t V i n ( τ ) e − t − τ R C d τ V_{out}(t) = \frac{1}{RC} \int_{-\infty}^{t} V_{in}(\tau) e^{-\frac{t - \tau}{RC}} d\tau Vout(t)=RC1tVin(τ)eRCtτdτ

通过拉普拉斯变换,将其转化到频域:

V o u t ( s ) V i n ( s ) = 1 R C ⋅ s + 1 \frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{RC \cdot s + 1} Vin(s)Vout(s)=RCs+11

ω c = 1 R C \omega_c = \frac{1}{RC} ωc=RC1,得到:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

2. 频率响应

一阶低通滤波器的传递函数 H ( s ) H(s) H(s) 表示了滤波器对不同频率信号的响应:

  • s = j ω s = j\omega s= 时,低频( ω \omega ω 较小)信号通过的幅度接近 1,即通过率高。
  • ω \omega ω 较大时,传递函数的值接近 0,即高频信号被大大衰减。

3. 截止频率

ω c \omega_c ωc 是滤波器的截止频率,即在该频率处信号的幅度被衰减到原来的 1 2 \frac{1}{\sqrt{2}} 2 1 倍(约 0.707 倍)。它定义了低通滤波器允许通过的最大频率。

综上所述,模拟域中的一阶低通滤波器传递函数为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

是由其设计目标、微分方程描述以及频率响应特性决定的。

二阶滤波器通过联级一阶滤波器的推导

二阶滤波器可以通过两个一阶滤波器串联(联级)得到。假设我们有两个一阶低通滤波器,其传递函数分别为:

H 1 ( s ) = 1 1 + s / ω c 1 H_1(s) = \frac{1}{1 + s / \omega_{c1}} H1(s)=1+s/ωc11

H 2 ( s ) = 1 1 + s / ω c 2 H_2(s) = \frac{1}{1 + s / \omega_{c2}} H2(s)=1+s/ωc21

当将这两个一阶滤波器串联时,总的传递函数 H ( s ) H(s) H(s) 为:

H ( s ) = H 1 ( s ) ⋅ H 2 ( s ) H(s) = H_1(s) \cdot H_2(s) H(s)=H1(s)H2(s)

即:

H ( s ) = ( 1 1 + s / ω c 1 ) ⋅ ( 1 1 + s / ω c 2 ) H(s) = \left( \frac{1}{1 + s / \omega_{c1}} \right) \cdot \left( \frac{1}{1 + s / \omega_{c2}} \right) H(s)=(1+s/ωc11)(1+s/ωc21)

假设两个一阶滤波器的截止频率相同,即 ω c 1 = ω c 2 = ω c \omega_{c1} = \omega_{c2} = \omega_c ωc1=ωc2=ωc,则总的传递函数为:

H ( s ) = ( 1 1 + s / ω c ) 2 H(s) = \left( \frac{1}{1 + s / \omega_c} \right)^2 H(s)=(1+s/ωc1)2

将其展开得到:

H ( s ) = 1 ( 1 + s / ω c ) 2 = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{(1 + s / \omega_c)^2} = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=(1+s/ωc)21=1+ωc2s+(ωcs)21

这就是一个标准的二阶低通滤波器的传递函数形式。它可以表示为:

H ( s ) = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=1+ωc2s+(ωcs)21

或者更一般的形式:

H ( s ) = ω c 2 s 2 + 2 ζ ω c s + ω c 2 H(s) = \frac{\omega_c^2}{s^2 + 2\zeta\omega_c s + \omega_c^2} H(s)=s2+2ζωcs+ωc2ωc2

其中, ζ \zeta ζ 是阻尼系数,对于上述情况 ζ = 1 \zeta = 1 ζ=1。通过改变 ζ \zeta ζ 的值,可以设计出具有不同频率特性的二阶滤波器。

总结

通过将两个一阶低通滤波器串联,我们得到了一个二阶低通滤波器的传递函数。这个方法可以推广到高通、带通和带阻滤波器,通过适当的组合一阶滤波器可以实现各种复杂的频率响应特性。

相关文章:

[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器

前言 不是学电子出身的,这里很多东西是问了朋友… 模拟域中的一阶低通滤波器传递函数 模拟域中的一阶低通滤波器的传递函数可以表示为: H ( s ) 1 s ω c H(s) \frac{1}{s \omega_c} H(s)sωc​1​ 这是因为一阶低通滤波器的设计目标是允许低频信…...

Mac环境 aab包转apks,并安装apks

一、下载下载bundletool工具 Releases google/bundletool GitHub 二、将下载bundletool.jar包、aab、keystore文件全部放到同一个目录下 例如我全部放到download目录下 转换命令行: java -jar bundletool-all-1.16.0.jar build-apks --modeuniversal --bundle…...

银河麒麟V10 SP1.1操作系统 离线安装 nginx1.21.5、redis 服务

银河麒麟官网地址:国产操作系统、麒麟操作系统——麒麟软件官方网站 一、查看系统版本 命令:nkvers 我的是 release V10 (SP1),根据这个版本去官网找对应的rpm包 银河麒麟操作系统的rpm包必须从官方找, 要是随便找个Centos的rp…...

ios swift5 视频播放 播放视频失败 无法播放HEVC (H.265) 格式的视频 H.264格式的可以播放

文章目录 1.问题2.原因:iOS swift AVPlayerViewController无法播放HEVC (H.265) 格式的视频3.解决方法用第三方框架MobileVLCKit来播放4.用MobileVLCKit写的播放器4.1 两个oc版本的4.2 两个swiftUI版本的5.苹果是支持HEVC (H.265) 格式的视频,是硬件那边…...

网工内推 | 网络工程师,IE认证优先,最高18k*14薪,周末双休

01 上海吾索信息科技有限公司 🔷招聘岗位:网络工程师 🔷岗位职责: 1)具备网络系统运维服务经验以及数据库实施经验,具备网络系统认证相关资质或证书; 2)掌握常用各设备的运维巡检…...

【Qt】QMessageBox 各种对话框的默认显示效果

1. 函数原型 void about(QWidget *parent, const QString &title, const QString &text)void aboutQt(QWidget *parent, const QString &title QString())QMessageBox::StandardButton critical(QWidget *parent, const QString &title, const QString &…...

一文弄懂线性回归模型

1、引言 今天,我们将深入探讨机器学习中的三个关键概念:线性回归、代价函数和梯度下降。这些概念构成了许多机器学习算法的基础。起初,我决定不写一篇关于这些主题的文章,因为它们已经被广泛涉及。不过,我改变了主意&…...

uniApp获取实时定位

通过你获取的key放到项目manifest.json里面&#xff0c;对应填写你所需要的key值&#xff0c;还有高德用户名 用户名&#xff1a; key值的位置&#xff1a; 代码&#xff1a; html: <view class"intList pdNone"><view class"label">详细地…...

linux的source命令

用法 source file 也可以用.空格file来代替 . file 作用 在当前bash环境下读取并执行FileName中的命令. source(或点)令通常用于重新执行刚修改的初始化文档&#xff0c;如 .bash_profile 和 .profile等配置文件. 简单的说就是: source命令会把file里的命令在当前shell里一…...

特种作业操作证(焊接与热切割作业)2024年理论考试题库。

1.关于隐弧排烟罩下列说法正确的是&#xff08;&#xff09;。 A.这类排烟罩适用于焊接大而长的焊件时排除电焊烟尘和有毒气体 B.这类排烟罩对焊接区实行密闭&#xff0c;能最大限度地减少臭氧等有毒气体的弥散 C.利用压缩空气从主管中高速喷出时&#xff0c;在副管形成负压…...

免交互和嵌入执行模式

目录 概念 语法格式 统计行数 赋值变量 修改密码​编辑往文件里添加内容 ​编辑​编辑引入变量 整体赋值​编辑 加引号不赋值变量 expect实现免交互 免交互设置密码 免交互切换用户 嵌入执行模式 添加用户并免交互设置密码 免交互登录 传参实现ssh 练习 概念 …...

Hadoop版本演变、分布式集群搭建

Hadoop版本演变历史 Hadoop发行版非常的多&#xff0c;有华为发行版、Intel发行版、Cloudera Hadoop(CDH)、Hortonworks Hadoop(HDP)&#xff0c;这些发行版都是基于Apache Hadoop衍生出来的。 目前Hadoop经历了三个大的版本。 hadoop1.x&#xff1a;HDFSMapReduce hadoop2.x…...

【Qt C++实现绘制仪表盘】

要在Qt C中绘制仪表盘&#xff0c;您可以使用QChart、QSeries、QBarSeries、QPointSeries等类。以下是一个简单的示例&#xff0c;演示如何使用这些类创建一个绘图仪表盘&#xff1a; #include <QApplication> #include <QChart> #include <QChartView> #in…...

一文看懂LLaMA 2:大型多模态模型的新里程碑

一文看懂LLaMA 2&#xff1a;大型多模态模型的新里程碑 LLaMA 2是OpenAI继GPT-3之后推出的又一重磅模型&#xff0c;它不仅在文本生成方面有所突破&#xff0c;而且在图像处理和语音识别等领域也展现出了令人印象深刻的能力。本文将全面介绍LLaMA 2的背景、技术细节、应用场景…...

基于Spring Boot构建淘客返利平台

基于Spring Boot构建淘客返利平台 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将讨论如何基于Spring Boot构建一个淘客返利平台。 淘客返利平台通过…...

Qt—贪吃蛇项目(由0到1实现贪吃蛇项目)

用Qt实现一个贪吃蛇项目 一、项目介绍二、游戏大厅界面实现2.1完成游戏大厅的背景图。2.2创建一个按钮&#xff0c;给它设置样式&#xff0c;并且可以跳转到别的页面 三、难度选择界面实现四、 游戏界面实现五、在文件中写入历史战绩5.1 从文件里提取分数5.2 把贪吃蛇的长度存入…...

Java导出Excel并邮件发送

一、导出Excel 添加maven依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>3.10-FINAL</version></dependency><dependency><groupId>org.apache.poi</groupI…...

【课程总结】Day12:YOLO的深入了解

前言 在【课程总结】Day11&#xff08;下&#xff09;&#xff1a;YOLO的入门使用一节中&#xff0c;我们已经了解YOLO的使用方法&#xff0c;使用过程非常简单&#xff0c;训练时只需要三行代码&#xff1a;引入YOLO&#xff0c;构建模型&#xff0c;训练模型&#xff1b;预测…...

保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统

保护隐私&#xff0c;释放智能&#xff1a;使用LangChain和Presidio构建安全的AI问答系统 在人工智能&#xff08;AI&#xff09;飞速发展的今天&#xff0c;AI问答系统已经成为企业与客户互动的重要工具。然而&#xff0c;随之而来的个人数据隐私问题也日益凸显。如何在不泄露…...

【高考志愿】自动化

目录 一、专业概述 二、课程设计 三、就业前景与方向 四、志愿填报 五、自动化专业排名 一、专业概述 高考志愿自动化专业选择&#xff0c;无疑是迈向现代化工业与科技发展的一把金钥匙。自动化专业&#xff0c;作为现代工程领域的重要支柱&#xff0c;融合了计算机、电子…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...