P1064 [NOIP2006 提高组] 金明的预算方案
[NOIP2006 提高组] 金明的预算方案
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 n n n 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 | 附件 |
---|---|
电脑 | 打印机,扫描仪 |
书柜 | 图书 |
书桌 | 台灯,文具 |
工作椅 | 无 |
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 0 0 个、 1 1 1 个或 2 2 2 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 n n n 元。于是,他把每件物品规定了一个重要度,分为 5 5 5 等:用整数 1 ∼ 5 1 \sim 5 1∼5 表示,第 5 5 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 10 10 元的整数倍)。他希望在不超过 n n n 元的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 j j j 件物品的价格为 v j v_j vj,重要度为 w j w_j wj,共选中了 k k k 件物品,编号依次为 j 1 , j 2 , … , j k j_1,j_2,\dots,j_k j1,j2,…,jk,则所求的总和为:
v j 1 × w j 1 + v j 2 × w j 2 + ⋯ + v j k × w j k v_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k} vj1×wj1+vj2×wj2+⋯+vjk×wjk。
请你帮助金明设计一个满足要求的购物单。
输入格式
第一行有两个整数,分别表示总钱数 n n n 和希望购买的物品个数 m m m。
第 2 2 2 到第 ( m + 1 ) (m + 1) (m+1) 行,每行三个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 v i v_i vi, p i p_i pi, q i q_i qi 分别表示第 i i i 件物品的价格、重要度以及它对应的的主件。如果 q i = 0 q_i=0 qi=0,表示该物品本身是主件。
输出格式
输出一行一个整数表示答案。
样例 #1
样例输入 #1
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
样例输出 #1
2200
提示
数据规模与约定
对于全部的测试点,保证 1 ≤ n ≤ 3.2 × 1 0 4 1 \leq n \leq 3.2 \times 10^4 1≤n≤3.2×104, 1 ≤ m ≤ 60 1 \leq m \leq 60 1≤m≤60, 0 ≤ v i ≤ 1 0 4 0 \leq v_i \leq 10^4 0≤vi≤104, 1 ≤ p i ≤ 5 1 \leq p_i \leq 5 1≤pi≤5, 0 ≤ q i ≤ m 0 \leq q_i \leq m 0≤qi≤m,答案不超过 2 × 1 0 5 2 \times 10^5 2×105。
NOIP 2006 提高组 第二题
这道题其实是一个背包问题和一个正常的dp转换问题,其实不难思考
首先我们可以想到在挑选一个主件时,可能会有四种情况:
情况1:只选主件
那么此时的状态转移方程就是
d p [ j ] = m a x ( d p [ j ] , d p [ j − w [ i ] ] + v [ i ] ) ; dp[j]=max(dp[j],dp[j-w[i]]+v[i]); dp[j]=max(dp[j],dp[j−w[i]]+v[i]);
情况2:只选主件和附件1
则可得到
d p [ j ] = m a x ( d p [ j ] , d p [ j − w [ i ] − f j w [ i ] [ 1 ] ] + v [ i ] + f j v [ i ] [ 1 ] ) ; dp[j]=max(dp[j],dp[j-w[i]-fjw[i][1]]+v[i]+fjv[i][1]); dp[j]=max(dp[j],dp[j−w[i]−fjw[i][1]]+v[i]+fjv[i][1]);
同样还有两种情况,会有以下的两种状态转移方程
d p [ j ] = m a x ( d p [ j ] , d p [ j − w [ i ] − f j w [ i ] [ 2 ] ] + v [ i ] + f j v [ i ] [ 2 ] ) ; dp[j]=max(dp[j],dp[j-w[i]-fjw[i][2]]+v[i]+fjv[i][2]); dp[j]=max(dp[j],dp[j−w[i]−fjw[i][2]]+v[i]+fjv[i][2]);
d p [ j ] = m a x ( d p [ j ] , d p [ j − w [ i ] − f j w [ i ] [ 1 ] − f j w [ i ] [ 2 ] ] + v [ i ] + f j v [ i ] [ 1 ] + f j v [ i ] [ 2 ] ) ; dp[j]=max(dp[j],dp[j-w[i]-fjw[i][1]-fjw[i][2]]+v[i]+fjv[i][1]+fjv[i][2]); dp[j]=max(dp[j],dp[j−w[i]−fjw[i][1]−fjw[i][2]]+v[i]+fjv[i][1]+fjv[i][2]);
既然有了此,那么程序就好写了
#include <bits/stdc++.h>
using namespace std;int n,m;
int v[32100],w[32100],fjw[32100][3],fjv[32100][3];//v为主件的价值,w为主件的重量,fjw为附件的重量,fjv为附件的价值
int dp[33300];
int main() {cin>>n>>m;for (int i=1;i<=m;i++){int a,b,c;cin>>a>>b>>c;if (c==0){v[i]=a*b;w[i]=a;}else {fjw[c][0]++;fjw[c][fjw[c][0]]=a;fjv[c][fjw[c][0]]=a*b;}}for (int i=1;i<=m;i++){for (int j=n;j>=w[i];j--){dp[j]=max(dp[j],dp[j-w[i]]+v[i]);//情况1只要主件if (j>=w[i]+fjw[i][1])dp[j]=max(dp[j],dp[j-w[i]-fjw[i][1]]+v[i]+fjv[i][1]);//情况2只要主件和附件1if (j>=w[i]+fjw[i][2])dp[j]=max(dp[j],dp[j-w[i]-fjw[i][2]]+v[i]+fjv[i][2]);//情况2只要主件和附件2if (j>=w[i]+fjw[i][1]+fjw[i][2])dp[j]=max(dp[j],dp[j-w[i]-fjw[i][1]-fjw[i][2]]+v[i]+fjv[i][1]+fjv[i][2]);//情况3都要}}cout<<dp[n];return 0;
}
相关文章:
P1064 [NOIP2006 提高组] 金明的预算方案
[NOIP2006 提高组] 金明的预算方案 题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置࿰…...

大型企业组网如何规划网络
大型企业组网是一个复杂的过程,它需要细致的规划和设计,以确保网络能够满足企业的业务需求,同时保证性能、安全性和可扩展性。以下是规划大型企业网络的一些关键步骤和考虑因素: 1. 需求分析 业务需求:与各个业务部门…...
java:aocache的单实例缓存(二)
之前一篇博客《java:aocache的单实例缓存》介绍了aoocache使用注解AoCacheable实现单实例缓存的方式,同时也指出了这种方式的使用限制,就是这个注解定义的构造方法,不能再创建出新实例。 为了更灵活方便的实现单实例。aocache最新版本0.4.0增…...

ElasticSearch安装部署
简介 Elasticsearch 是一个开源的分布式搜索和分析引擎,用于实时地存储、检索和分析大数据量。它基于 Apache Lucene 搜索引擎库构建而成,提供了一个强大、稳定且易于扩展的搜索解决方案。 主要特点和用途: 分布式存储和搜索: E…...
数据赋能(132)——开发:数据转换——影响因素、直接作用、主要特征
影响因素 数据转换过程中需要考虑的一些影响因素: 数据格式与结构: 不同系统或应用可能使用不同的数据格式(如JSON、XML、CSV等)和数据结构(如关系型数据库、非关系型数据库等)。数据转换需要确保原始数据…...

TMGM:ASIC撤销禁令,TMGM强化合规、重启差价合约服务
TMGM作为差价合约(CFDs)与保证金外汇交易领域的领航者,安全、合规、高效被奉为我集团的终身使命。澳大利亚证券和投资委员会(ASIC)已正式撤销了早前针对TMGM差价合约业务实施的临时止损令。这一误会的解除,…...

基于SpringBoot网吧管理系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 Java精品实战案例《600套》 2025-2026年最值得选择的Java毕业设计选题大全࿱…...

实测2024年最佳的三款Socks5代理IP网站
一、引言 在浩瀚的网络世界中,Socks5代理IP服务如同导航灯塔,指引我们穿越数据海洋,安全、稳定地访问目标网站。作为专业的测评团队,我们深知一款优秀的Socks5代理IP网站需要具备哪些特质:稳定的IP资源、高效的连接速…...

Pythonnet能导入clr,但无法引入System模块?
【pythonnet详解】—— Python 和 .NET 互操作的库_pythonnet 详细使用-CSDN博客 Python中动态调用C#的dll动态链接库中方法_python 如何调用c# dll-CSDN博客 需求:Python调用并传List<float>类型参数给.Net 起初:直接 # 创建一个Python浮点数…...

媒体宣发套餐的概述及推广方法-华媒舍
在今天的数字化时代,对于产品和服务的宣传已经变得不可或缺。媒体宣发套餐作为一种高效的宣传方式,在帮助企业塑造品牌形象、扩大影响力方面扮演着重要角色。本文将揭秘媒体宣发套餐,为您呈现一条通往成功的路。 1. 媒体宣发套餐的概述 媒体…...

Windows和Linux C++判断磁盘空间是否充足
基本是由百度Ai写代码生成的,记录一下。实现此功能需要调用系统的API函数。 对于Windows,可调用函数GetDiskFreeSpaceEx,使用该函数需要包含头文件windows.h。该函数的原型: 它的四个参数: lpDirectoryName࿰…...
数据访问层如何提取数据到其他层,其他类中
当然可以,以下是一些具体的例子,展示了如何将数据库访问逻辑封装在一个单独的类中,并在其他类中使用这个类来获取数据。 数据库访问类(DatabaseAccess.java): java复制代码 import java.sql.*; import ja…...
【JS】AI总结:JavaScript中常用的判空方法
在JavaScript中,判空是一个常见的操作,因为变量可能未定义、未初始化或包含特定的空值。以下是JavaScript中常用的判空方法: 使用if语句直接判断: 如果变量是null、undefined、0、NaN、空字符串(""ÿ…...

Rust单元测试、集成测试
单元测试、集成测试 在了解了如何在 Rust 中写测试用例后,本章节我们将学习如何实现单元测试、集成测试,其实它们用到的技术还是上一章节中的测试技术,只不过对如何组织测试代码提出了新的要求。 单元测试 单元测试目标是测试某一个代码单…...

vue全局方法plugins/utils
一、在src目录下创建一个plugins文件夹 test.ts文件存放创建的方法,index.ts用于接收所有自定义方法进行统一处理 二、编写自定义方法 // test.ts文件 export default {handleTest(val1: number, val2: number) {// 只是一个求和的方法return val1 val2;}, };三…...

高阶算法班从入门到精通之路
课程介绍 本课程旨在帮助学员深入理解算法与数据结构的核心概念,从而掌握高级算法设计与分析技能。每集课程内容精心设计,涵盖了常用数据结构、经典算法及其应用场景等方面的深度讲解,同时通过大量实例演练,帮助学员提升解决实际…...
C++ 左值右值
文章目录 概述左值右值右值引用左值和右值的互换 小结 概述 左值和右值属于2中不同的表达式类型;它们在表达式中扮演不同的角色,特别是在赋值操作和函数参数传递中。 左值 定义:左值是指那些在内存中有确定位置的表达式,可以出…...

[数据集][目标检测]水面垃圾水面漂浮物检测数据集VOC+YOLO格式3749张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3749 标注数量(xml文件个数):3749 标注数量(txt文件个数):3749 标注…...

[深度学习] 卷积神经网络CNN
卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理数据具有类似网格结构的神经网络,最常用于图像数据处理。 一、CNN的详细过程: 1. 输入层 输入层接收原始数据,例如一张图像,它可以被…...
区别QPushButton和QToolButton
在刚开始学习Qt时,可能很难理解QPushButton和QToolButton之间的区别。 QToolButton通常用于QToolBar中,常常只显示图标,而不显示文本。那么,它们的主要区别是什么?什么时候应该使用QPushButton,什么时候应该使用QToolButton? 了解这一点很重要,这样我们才能选择最合适…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...