OJ-选座位
题目描述
要考试了,小明需要去图书馆挑选一个座位来复习。小明需要找到一个位置,这个位置应距离任何已经落座的人尽可能的远(即与最近的人的距离尽可能的大)。
图书馆的座位为一个N*M的矩阵,N表示总的排数,M表示每一排的座位数。元素0表示此座位没有人落座,1表示有人落座。
当有多个座位满足要求时,小明优先挑选的位置依照优先级应:
- N尽可能的小
- 当N一致时,M尽可能的小
输入
第一行输入两个整数N和M,分别表示排数和每一排的座位数
接下来的N行,每行M个数字,其中0表示无人坐此位置,1表示有人坐此位置。
输出
两个整数,分别表示选择座位的排数和列数(从0开始)
样例输入
3 5
0 0 0 0 0
0 0 1 0 1
0 0 1 0 0
代码实现:
#include <iostream>
#include <vector>
#include <cmath>
#include <climits>using namespace std;int findMax(const vector<vector<int>>& member, int x, int y)
{int n = member.size();int m = member[0].size();int minlength = 99999;for (int i = 0; i < n; ++i) {for (int j = 0; j < m; ++j) {if (member[i][j] == 1) {int length = abs(i - x) + abs(j - y);if (length < minlength) {minlength = length;}}}}return minlength;
}pair<int, int> findBest(const vector<vector<int>>& member)
{int n = member.size();int m = member[0].size();int maxXY = -1;pair<int, int> bestxy = {-1, -1};for (int i = 0; i < n; ++i) {for (int j = 0; j < m; ++j) {if (member[i][j] == 0) {int length = findMax(member, i, j);if (length > maxXY) {maxXY = length;bestxy = {i, j};} else if (length == maxXY) {if (i < bestxy.first){bestxy = {i, j};} else if (i == bestxy.first) {if (j < bestxy.second) {bestxy = {i, j};}}}}}}return bestxy;
}int main() {vector<int> vTtemp;vector<vector<int>> member;int n,m;int temp;std::cin>>n>>m;for(int i = 0; i < n; i++){for(int j = 0; j < m; j++){std::cin>>temp;vTtemp.push_back(temp);}member.push_back(vTtemp);vTtemp.clear();}pair<int, int> bestxy = findBest(member);cout <<bestxy.first << " " << bestxy.second << endl;return 0;
}相关文章:
OJ-选座位
题目描述 要考试了,小明需要去图书馆挑选一个座位来复习。小明需要找到一个位置,这个位置应距离任何已经落座的人尽可能的远(即与最近的人的距离尽可能的大)。 图书馆的座位为一个N*M的矩阵,N表示总的排数࿰…...
【子串】3. 无重复的最长子串
3. 无重复的最长子串 难度:中等难度 力扣地址:https://leetcode.cn/problems/longest-substring-without-repeating-characters/description/ 题目看起来简单,刷起来有好几个坑,特此记录一下,解法比官网的更加简单&…...
Scrapy中爬虫优化技巧分享
scrapy是一个非常有用的python爬虫框架,它可以帮助我们轻松地从不同的网站上获取数据。同时,scrapy也有越来越多的用户在使用它来爬取数据,因此,在使用scrapy的过程中,我们需要考虑如何优化我们的爬虫,以便…...
自然语言处理-BERT处理框架-transformer
目录 1.介绍 2.Transformer 2.1 引言 2.2 传统RNN网络的问题 2.3 整体架构 2.4 Attention 2.5 Self-Attention如何计算 3.multi-headed机制 4. BERT训练方法 1.介绍 BERT:当前主流的解决框架,一站式搞定NLP任务。(解决一个NLP任务时的考虑…...
Kafka~消息系列问题解决:消费顺序问题解决、消息丢失问题优化(不能保证100%)
消息消费顺序问题 使用消息队列的过程中经常有业务场景需要严格保证消息的消费顺序,比如我们同时发了 2 个消息,这 2 个消息对应的操作分别对应的数据库操作是: 用户等级升级。根据用户等级下的订单价格 假如这两条消息的消费顺序不一样造…...
如何确保日常安全运维中的数据加密符合等保2.0标准?
等保2.0标准下的数据加密要求 等保2.0标准是中国信息安全等级保护制度的升级版,它对信息系统的安全保护提出了更为严格的要求。在日常安全运维中,确保数据加密符合等保2.0标准,主要涉及以下几个方面: 数据加密技术的选择ÿ…...
下一代的JDK - GraalVM
GraalVM是最近几年Java相关的新技术领域不多的亮点之一, 被称之为革命性的下一代JDK,那么它究竟有什么神奇之处,又为当前的Java开发带来了一些什么样的改变呢,让我们来详细了解下 下一代的JDK 官网对GraalVM的介绍是 “GraalVM 是…...
Java三方库-单元测试
文章目录 Junit注解常用类无参数单测带参数的单测 Junit 主要版本有4和5版本,注解不太一样, 4迁移5参考官方文档 主要记录下常用的一些操作 其他复杂操作见官网 https://junit.org/junit5/docs/current/user-guide/#overview-java-versions 引入5.9…...
p2p、分布式,区块链笔记: libp2p基础
通信密钥 noise::{Keypair, X25519Spec} X25519/Ed25519类似RSA 算法。Noise 用于设计和实现安全通信协议。它允许通信双方在没有预先共享密钥的情况下进行安全的密钥交换,并通过加密和身份验证保护通信内容。libp2p 提供了对 Noise 协议的原生支持,它允…...
企业本地大模型用Ollama+Open WebUI+Stable Diffusion可视化问答及画图
最近在尝试搭建公司内部用户的大模型,可视化回答,并让它能画图出来, 主要包括四块: Ollama 管理和下载各个模型的工具Open WebUI 友好的对话界面Stable Diffusion 绘图工具Docker 部署在容器里,提高效率以上运行环境Win10, Ollama,SD直接装在windows10下, 然后安装Docker…...
Unity学习笔记---调试
使用Log进行调试 使用Debug.Log方法可以将一些运行时信息打印到Console窗口中。 打印时间戳 //获取时间 Debug.Log(DateTime.Now.ToString());//打印毫秒级的时间 Debug.Log(((DateTime.Now.ToUniversalTime().Ticks - 621355968000000000) / 10000) * 0.001); 打印自定义文…...
Py之dashscope:dashscope的简介、安装和使用方法、案例应用之详细攻略
Py之dashscope:dashscope的简介、安装和使用方法、案例应用之详细攻略 目录 dashscope的简介 1、产品的主要特点和优势包括: dashscope的安装和使用方法 1、安装 2、使用方法 dashscope的案例应用 1、通义千问-Max:通义千问2.5系列 2…...
Go使用Gin框架开发的Web程序部署在Linux时,无法绑定监听Ipv4端口
最近有写一部分go语言开发的程序,在部署程序时发现,程序在启动后并没有绑定ipv4的端口,而是直接监听绑定ipv6的端口。 当我用netstat -antup | grep 3601查找我的gin服务启动的端口占用情况的时候发现,我的服务直接绑定了tcp6 &a…...
【图解大数据技术】Hadoop、HDFS、MapReduce、Yarn
【图解大数据技术】Hadoop、HDFS、MapReduce、Yarn HadoopHDFSHDFS架构写文件流程读文件流程 MapReduceMapReduce简介MapReduce整体流程 Yarn Hadoop Hadoop是Apache开源的分布式大数据存储与计算框架,由HDFS、MapReduce、Yarn三部分组成。广义上的Hadoop其实是指H…...
AGPT•intelligence:带你领略全新量化交易的风采
随着金融科技的快速发展,量化交易已经成为了投资领域的热门话题。越来越多的投资者开始关注和使用量化交易软件来进行投资决策。在市场上有许多量化交易软件可供选择。 Delaek,是一位资深的金融科技专家,在 2020年成立一家专注于数字资产量化…...
HarmonyOS Next开发学习手册——创建轮播 (Swiper)
Swiper 组件提供滑动轮播显示的能力。Swiper本身是一个容器组件,当设置了多个子组件后,可以对这些子组件进行轮播显示。通常,在一些应用首页显示推荐的内容时,需要用到轮播显示的能力。 针对复杂页面场景,可以使用 Sw…...
【计算机视觉】mmcv库详细介绍
文章目录 MMVC库概览特点和优势主要组件应用案例示例一:数据加载和处理示例二:模型训练和验证MMVC库概览 MMCV 是一个用于计算机视觉研究的开源库,它为各种视觉任务提供了底层的、高度优化的 API。该库涵盖了从数据加载到模型训练的各个方面,广泛应用于开源项目,如 MMDet…...
【面试系列】Go 语言高频面试题
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、…...
React 扩展
文章目录 PureComponent1. 使用 React.Component,不会进行浅比较2. 使用 shouldComponentUpdate 生命周期钩子,手动比较3. 使用 React.PureComponent,自动进行浅比较 Render Props1. 使用 Children props(通过组件标签体传入结构&…...
IT入门知识第八部分《云计算》(8/10)
目录 云计算:现代技术的新篇章 1. 云计算基础 1.1 云计算的起源和发展 云计算的早期概念 云计算的发展历程 1.2 云计算的核心特点 按需自助服务 广泛的网络访问 资源池化 快速弹性 按使用量付费 1.3 云计算的优势和挑战 成本效益 灵活性和可扩展性 维…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...
