【快速排序】| 详解快速排序 力扣912
🎗️ 主页:小夜时雨
🎗️专栏:快速排序
🎗️如何活着,是我找寻的方向
目录
- 1. 题目解析
- 2. 代码
1. 题目解析
题目链接: https://leetcode.cn/problems/sort-an-array/

我们上道题讲过快速排序的核心代码,建议先看一下这道题:颜色分类 https://leetcode.cn/problems/sort-colors/description/
快速排序的核心代码区间就是数组分三块, 所以还是十分重要的, 接下来我们再来分析一下分块这个过程:
- i 作为基准 key , 用三个变量分别标记, i 标记遍历原数组的位置, left 标记 0 区域的最右边位置, right 标记右边 2 区域最左边的位置.
- i 遍历数组, nums[i] < key 时, 交换 left + 1 和 i 位置的值, i++;
- 碰见 == key 的, 直接 i++;
- nums[i] > key 时, 交换 right - 1 和 i 位置的值, 此时注意没有 i++, 仍要进行判断 i 位置的值(详情看颜色分类这道题: https://leetcode.cn/problems/sort-colors/description/
接下来我们来说一下快速排序的实现过程
快速排序具体实现过程:
- 首先我们先确定一个 key,作为基准进行比较.
- 三个变量进行标记, 分别是 i 标记原数组遍历的位置, left 标记 < key 区域的最右边位置, right 标记 > key 区域的最左边位置.
- i 遍历原数组, nums[i] < key 时, 交换 left + 1 和 i 位置的值, 之后 i++, left++;
- nums[i] == key 时, i++, 不做任何交换
- nums[i] > key 时, 交换 right - 1 和 i 位置的值, 之后 right - 1, 注意 i 不变
- 这个之后把数组分成了三块, 中间一块都是等于 key 的不用处理, 之后递归处理左边区域和右边区域, 也都是同样的处理方式, 就是递归. (看后续的代码更容易理解).
看下面的分析图可能会更容易理解:

- 关于 key 的选择, 我们用随机的方式选择基准元素最好, 分三块的思想当全部元素都一样的时候, 此时只需遍历一遍就可以排好数组了.

- 也就是说我们想让整体有序,先把数组分为三块, 左边是小于 key 的区域, 中间是等于 key 的区域, 右边是大于 key 的区域. 这样是一个大致有序的数组了
- 以左区间为例:得先让左区间进行有序,让左区间有序就得让左区间进行划分, 分成三块, 之后左边区间又逐渐有序了.
- 就这样一直划分下去,直到划分不了区间就是有序了, 那么这个时候左边区间就是已经排好序了, 右边区间同理.
- 我们发现这个过程其实有点像是二叉树的前序遍历, 前让中间区域有序(类比是根节点), 之后再是左区间, 右区间有序.
- 归并排序有点像是二叉树的后序遍历,左右区间有序之后(类比先遍历左右子树),合并之后整体才会有序(遍历根节点)。
2. 代码
看下面的代码对照着上面的流程解析可能会更加的清楚。
// 快速排序public int[] sortArray3(int[] nums) {int n = nums.length;// 传入下标qsort(nums, 0, n - 1);return nums;} /*** l, r 表示下标, 要排序的下标* * @param nums* @param l* @param r*/private void qsort(int[] nums, int l, int r) {// 循环终止条件if(l >= r) return;// 数组分三块, 不是从 0 开始, 因为要划分好多次// left 表示小于 key 的最右侧, right 表示大于 key 的最左侧int left = l - 1, right = r + 1, i = l;// 随机生成 key, 注意这个位置, nextInt(r - l + 1) + l 别忘了加 lint key = nums[new Random().nextInt(r - l + 1) + l];// 数组分三块, 核心代码while(i < right) {if(nums[i] < key) swap(nums, i++, ++left);else if (nums[i] == key) i++;else swap(nums, i, --right);}// 分完之后, 再分左侧的和右侧的qsort(nums, l, left);qsort(nums, right, r);}private void swap(int[] nums, int i, int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;}
归并排序: https://blog.csdn.net/Jin__Wang/article/details/139811604
🎗️🎗️🎗️ 好啦,到这里有关本题的分享就没了,如果感觉做的还不错的话可以点个赞,关注一下,你的支持就是我继续下去的动力,我们下期再见,拜了个拜~ ☆*: .。. o(≧▽≦)o .。.:*☆
相关文章:
【快速排序】| 详解快速排序 力扣912
🎗️ 主页:小夜时雨 🎗️专栏:快速排序 🎗️如何活着,是我找寻的方向 目录 1. 题目解析2. 代码 1. 题目解析 题目链接: https://leetcode.cn/problems/sort-an-array/ 我们上道题讲过快速排序的核心代码&a…...
游戏推荐: 植物大战僵尸杂交版
下载地址网上一搜就有. 安装就能玩. 2是显血. 4显示植物血, 5是加速. 都是左手主键盘的按钮, 再按是取消. 比较刺激: ps: 设置里面还能打开自动收集阳光和金币....
微调和rag的区别?
微调和RAG(Retrieval-Augmented Generation)在多个维度上存在显著的区别。以下是它们之间的主要差异: 1. **知识维度**: - RAG对知识的更新时间和经济成本更低。它不需要训练,只需要更新数据库即可。 - RAG对知识的掌控…...
CVPR讲座总结(二)-探索图像生成基础模型的最新进展探索多模态代理的最新进展:从视频理解到可操作代理
引言 在CVPR24上的教程中,微软高级研究员Linjie Li为我们带来了多模态代理的深入探索。这些代理通过整合多模态专家和大语言模型(LLM)来增强感知、理解和生成能力。本文总结了Linjie Li的讲座内容,重点介绍了多模态记忆、可操作代…...
为什么要禁用透明大页面
在安装CDH(Clouderas Distribution Including Apache Hadoop)环境时,禁用透明大页面(Transparent HugePages,THP)是一个推荐的系统优化步骤。以下是禁用透明大页面的一些原因: 1. **性能影响**…...
Element 页面滚动表头置顶
在开发后台管理系统时,表格是最常用的一个组件,为了看数据方便,时常需要固定表头。 如果页面基本只有一个表格区域,我们可以根据屏幕的高度动态的计算出一个值,给表格设定一个固定高度,这样表头就可以固定…...
对于CDA一级考试该咋准备??!
一、了解考试内容和结构 CDA一级考试主要涉及的内容包括:数据分析概述与职业操守、数据结构、数据库基础与数据模型、数据可视化分析与报表制作、Power BI应用、业务数据分析与报告编写等。 CDA Level Ⅰ 认证考试大纲:https://edu.cda.cn/group/4/thread/174335 …...
如何使用PHP和Selenium快速构建自己的网络爬虫系统
近年来,随着互联网的普及,网络爬虫逐渐成为了信息采集的主要手段之一,然而,常规的爬虫技术不稳定、难以维护,市面上的纯web网页爬虫也只能在静态页面上进行操作。而php结合selenium可达到动态爬虫的效果,具…...
intellij idea安装R包ggplot2报错问题求解
1、intellij idea安装R包ggplot2问题 在我上次解决图形显示问题后,发现安装ggplot2包时出现了问题,这在之前高版本中并没有出现问题, install.packages(ggplot2) ERROR: lazy loading failed for package lifecycle * removing C:/Users/V…...
【C++】初识C++(一)
一.什么是C C语言是结构化和模块化的语言,适合处理较小规模的程序。对于复杂的问题,规模较大的程序,需要高度 的抽象和建模时,C语言则不合适。为了解决软件危机, 20世纪80年代, 计算机界提出了OOP(object o…...
【智能算法】目标检测算法
目录 一、目标检测算法分类 二、 常见目标检测算法及matlab代码实现 2.1 R-CNN 2.1.1 定义 2.1.2 matlab代码实现 2.2 Fast R-CNN 2.2.1 定义 2.2.2 matlab代码实现 2.3 Faster R-CNN 2.3.1 定义 2.3.2 matlab代码实现 2.4 YOLO 2.4.1 定义 2.4.2 matlab代码实现…...
python 中 json.load json.loadd json.dump json.dumps 详解
在Python中,json 模块提供了用于处理JSON数据的函数。json.load(), json.loads(), json.dump(), 和 json.dumps() 是这个模块中用于序列化和反序列化JSON数据的主要函数。下面是它们之间的区别详解: json.load() 作用:从一个文件对象&#x…...
【UE 网络】专用服务器和多个客户端加入游戏会话的过程,以及GameMode、PlayerController、Pawn的创建流程
目录 0 引言1 多人游戏会话1.1 Why?为什么要有这个1.2 How?怎么使用? 2 加入游戏会话的流程总结 🙋♂️ 作者:海码007📜 专栏:UE虚幻引擎专栏💥 标题:【UE 网络】在网络…...
磁盘分区工具(fdisk 和 parted)区别及操作笔记
fdisk 和 parted 都是 Linux 系统中用于磁盘分区的工具。 两者主要区别: 支持的分区表类型: fdisk 主要支持 MBR分区表,MBR分区表支持的硬盘单个分区最大容量为2TB,最多可以有4个主分区。parted 支持 MBR分区表 和 GPT分区表&…...
VisualStudio2019受支持的.NET Core
1.VS Studio2019受支持的.NET Core? 适用于 Visual Studio 的 .NET SDK 下载 (microsoft.com) Visual Studio 2019 默认并不直接支持 .NET 6 及以上版本。要使用 .NET 6 或更高版本,你需要在 Visual Studio 2019 中采取额外步骤,比如安装相应…...
Java——IO流(二)-(1/7):字符流-FileReader、FileWriter、字符输出流的注意事项(构造器及常用方法、小结)
目录 文件字符输入流-读字符数据进来 介绍 构造器及常用方法 实例演示 文件字符输出流-写字符数据出去 介绍、构造器及常用方法 实例演示 字符输出流使用时的注意事项 小结 文件字符输入流-读字符数据进来 介绍 FileReader(文件字符输入流) 作…...
Spring循环依赖问题——从源码画流程图
文章目录 关键代码相关知识为什么要使用二级缓存为什么要使用三级缓存只使用两个缓存的问题不能解决构造器循环依赖为什么多例bean不能解决循环依赖问题初始化后代理对象赋值给原始对象解决循环依赖SpringBoot开启循环依赖 循环依赖 在线流程图 关键代码 从缓存中查询getSingl…...
Android SurfaceFlinger——动画播放准备(十五)
BootAnimation 本质上是一个线程,执行 run 之后,会先执行 readyToRun,接着执行 treadLoop 方法。 一、线程启动 1、BootAnimation 源码位置:/frameworks/base/cmds/bootanimation/BootAnimation.cpp readyToRun status_t BootAnimation::readyToRun() {// 添加默认资源…...
Zynq7000系列FPGA中的DMA控制器简介(二)
AXI互连上的DMA传输 所有DMA事务都使用AXI接口在PL中的片上存储器、DDR存储器和从外设之间传递数据。PL中的从设备通过DMAC的外部请求接口与DMAC通信,以控制数据流。这意味着从设备可以请求DMA交易,以便将数据从源地址传输到目标地址。 虽然DMAC在技术…...
获取 url 地址栏 ? 后面的查询字符串,并以键值对形式放到对象里面
写在前面 在前端面试当中,关于 url 相关的问题很常见,而对于 url 请求参数的问题也很常见,大部分以笔试题常见,今天就根据这道面试题一起来看一下。 问题 获取 url 地址栏?后面的查询字符串,并以键值对形式放到对象…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

