当前位置: 首页 > news >正文

【快速排序】| 详解快速排序 力扣912

🎗️ 主页:小夜时雨
🎗️专栏:快速排序
🎗️如何活着,是我找寻的方向

优雅

目录

  • 1. 题目解析
  • 2. 代码

1. 题目解析

题目链接: https://leetcode.cn/problems/sort-an-array/

在这里插入图片描述

我们上道题讲过快速排序的核心代码,建议先看一下这道题:颜色分类 https://leetcode.cn/problems/sort-colors/description/

快速排序的核心代码区间就是数组分三块, 所以还是十分重要的, 接下来我们再来分析一下分块这个过程:

  • i 作为基准 key , 用三个变量分别标记, i 标记遍历原数组的位置, left 标记 0 区域的最右边位置, right 标记右边 2 区域最左边的位置.
  • i 遍历数组, nums[i] < key 时, 交换 left + 1 和 i 位置的值, i++;
  • 碰见 == key 的, 直接 i++;
  • nums[i] > key 时, 交换 right - 1 和 i 位置的值, 此时注意没有 i++, 仍要进行判断 i 位置的值(详情看颜色分类这道题: https://leetcode.cn/problems/sort-colors/description/

接下来我们来说一下快速排序的实现过程

快速排序具体实现过程:

  1. 首先我们先确定一个 key,作为基准进行比较.
  2. 三个变量进行标记, 分别是 i 标记原数组遍历的位置, left 标记 < key 区域的最右边位置, right 标记 > key 区域的最左边位置.
  3. i 遍历原数组, nums[i] < key 时, 交换 left + 1 和 i 位置的值, 之后 i++, left++;
  4. nums[i] == key 时, i++, 不做任何交换
  5. nums[i] > key 时, 交换 right - 1 和 i 位置的值, 之后 right - 1, 注意 i 不变
  6. 这个之后把数组分成了三块, 中间一块都是等于 key 的不用处理, 之后递归处理左边区域和右边区域, 也都是同样的处理方式, 就是递归. (看后续的代码更容易理解).

看下面的分析图可能会更容易理解:

在这里插入图片描述

  • 关于 key 的选择, 我们用随机的方式选择基准元素最好, 分三块的思想当全部元素都一样的时候, 此时只需遍历一遍就可以排好数组了.

在这里插入图片描述

  • 也就是说我们想让整体有序,先把数组分为三块, 左边是小于 key 的区域, 中间是等于 key 的区域, 右边是大于 key 的区域. 这样是一个大致有序的数组了
  • 以左区间为例:得先让左区间进行有序,让左区间有序就得让左区间进行划分, 分成三块, 之后左边区间又逐渐有序了.
  • 就这样一直划分下去,直到划分不了区间就是有序了, 那么这个时候左边区间就是已经排好序了, 右边区间同理.
  • 我们发现这个过程其实有点像是二叉树的前序遍历, 前让中间区域有序(类比是根节点), 之后再是左区间, 右区间有序.
  • 归并排序有点像是二叉树的后序遍历,左右区间有序之后(类比先遍历左右子树),合并之后整体才会有序(遍历根节点)。

2. 代码

看下面的代码对照着上面的流程解析可能会更加的清楚。

	// 快速排序public int[] sortArray3(int[] nums) {int n = nums.length;// 传入下标qsort(nums, 0, n - 1);return nums;}    /*** l, r 表示下标, 要排序的下标* * @param nums* @param l* @param r*/private void qsort(int[] nums, int l, int r) {// 循环终止条件if(l >= r) return;// 数组分三块, 不是从 0 开始, 因为要划分好多次// left 表示小于 key 的最右侧, right 表示大于 key 的最左侧int left = l - 1, right = r + 1, i = l;// 随机生成 key, 注意这个位置, nextInt(r - l + 1) + l 别忘了加 lint key = nums[new Random().nextInt(r - l + 1) + l];// 数组分三块, 核心代码while(i < right) {if(nums[i] < key) swap(nums, i++, ++left);else if (nums[i] == key) i++;else swap(nums, i, --right);}// 分完之后, 再分左侧的和右侧的qsort(nums, l, left);qsort(nums, right, r);}private void swap(int[] nums, int i, int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;}

归并排序: https://blog.csdn.net/Jin__Wang/article/details/139811604

🎗️🎗️🎗️ 好啦,到这里有关本题的分享就没了,如果感觉做的还不错的话可以点个赞,关注一下,你的支持就是我继续下去的动力,我们下期再见,拜了个拜~ ☆*: .。. o(≧▽≦)o .。.:*☆

相关文章:

【快速排序】| 详解快速排序 力扣912

&#x1f397;️ 主页&#xff1a;小夜时雨 &#x1f397;️专栏&#xff1a;快速排序 &#x1f397;️如何活着&#xff0c;是我找寻的方向 目录 1. 题目解析2. 代码 1. 题目解析 题目链接: https://leetcode.cn/problems/sort-an-array/ 我们上道题讲过快速排序的核心代码&a…...

游戏推荐: 植物大战僵尸杂交版

下载地址网上一搜就有. 安装就能玩. 2是显血. 4显示植物血, 5是加速. 都是左手主键盘的按钮, 再按是取消. 比较刺激: ps: 设置里面还能打开自动收集阳光和金币....

微调和rag的区别?

微调和RAG&#xff08;Retrieval-Augmented Generation&#xff09;在多个维度上存在显著的区别。以下是它们之间的主要差异&#xff1a; 1. **知识维度**&#xff1a; - RAG对知识的更新时间和经济成本更低。它不需要训练&#xff0c;只需要更新数据库即可。 - RAG对知识的掌控…...

CVPR讲座总结(二)-探索图像生成基础模型的最新进展探索多模态代理的最新进展:从视频理解到可操作代理

引言 在CVPR24上的教程中&#xff0c;微软高级研究员Linjie Li为我们带来了多模态代理的深入探索。这些代理通过整合多模态专家和大语言模型&#xff08;LLM&#xff09;来增强感知、理解和生成能力。本文总结了Linjie Li的讲座内容&#xff0c;重点介绍了多模态记忆、可操作代…...

为什么要禁用透明大页面

在安装CDH&#xff08;Clouderas Distribution Including Apache Hadoop&#xff09;环境时&#xff0c;禁用透明大页面&#xff08;Transparent HugePages&#xff0c;THP&#xff09;是一个推荐的系统优化步骤。以下是禁用透明大页面的一些原因&#xff1a; 1. **性能影响**…...

Element 页面滚动表头置顶

在开发后台管理系统时&#xff0c;表格是最常用的一个组件&#xff0c;为了看数据方便&#xff0c;时常需要固定表头。 如果页面基本只有一个表格区域&#xff0c;我们可以根据屏幕的高度动态的计算出一个值&#xff0c;给表格设定一个固定高度&#xff0c;这样表头就可以固定…...

对于CDA一级考试该咋准备??!

一、了解考试内容和结构 CDA一级考试主要涉及的内容包括&#xff1a;数据分析概述与职业操守、数据结构、数据库基础与数据模型、数据可视化分析与报表制作、Power BI应用、业务数据分析与报告编写等。 CDA Level Ⅰ 认证考试大纲:https://edu.cda.cn/group/4/thread/174335 …...

如何使用PHP和Selenium快速构建自己的网络爬虫系统

近年来&#xff0c;随着互联网的普及&#xff0c;网络爬虫逐渐成为了信息采集的主要手段之一&#xff0c;然而&#xff0c;常规的爬虫技术不稳定、难以维护&#xff0c;市面上的纯web网页爬虫也只能在静态页面上进行操作。而php结合selenium可达到动态爬虫的效果&#xff0c;具…...

intellij idea安装R包ggplot2报错问题求解

1、intellij idea安装R包ggplot2问题 在我上次解决图形显示问题后&#xff0c;发现安装ggplot2包时出现了问题&#xff0c;这在之前高版本中并没有出现问题&#xff0c; install.packages(ggplot2) ERROR: lazy loading failed for package lifecycle * removing C:/Users/V…...

【C++】初识C++(一)

一.什么是C C语言是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要高度 的抽象和建模时&#xff0c;C语言则不合适。为了解决软件危机&#xff0c; 20世纪80年代&#xff0c; 计算机界提出了OOP(object o…...

【智能算法】目标检测算法

目录 一、目标检测算法分类 二、 常见目标检测算法及matlab代码实现 2.1 R-CNN 2.1.1 定义 2.1.2 matlab代码实现 2.2 Fast R-CNN 2.2.1 定义 2.2.2 matlab代码实现 2.3 Faster R-CNN 2.3.1 定义 2.3.2 matlab代码实现 2.4 YOLO 2.4.1 定义 2.4.2 matlab代码实现…...

python 中 json.load json.loadd json.dump json.dumps 详解

在Python中&#xff0c;json 模块提供了用于处理JSON数据的函数。json.load(), json.loads(), json.dump(), 和 json.dumps() 是这个模块中用于序列化和反序列化JSON数据的主要函数。下面是它们之间的区别详解&#xff1a; json.load() 作用&#xff1a;从一个文件对象&#x…...

【UE 网络】专用服务器和多个客户端加入游戏会话的过程,以及GameMode、PlayerController、Pawn的创建流程

目录 0 引言1 多人游戏会话1.1 Why&#xff1f;为什么要有这个1.2 How&#xff1f;怎么使用&#xff1f; 2 加入游戏会话的流程总结 &#x1f64b;‍♂️ 作者&#xff1a;海码007&#x1f4dc; 专栏&#xff1a;UE虚幻引擎专栏&#x1f4a5; 标题&#xff1a;【UE 网络】在网络…...

磁盘分区工具(fdisk 和 parted)区别及操作笔记

fdisk 和 parted 都是 Linux 系统中用于磁盘分区的工具。 两者主要区别&#xff1a; 支持的分区表类型&#xff1a; fdisk 主要支持 MBR分区表&#xff0c;MBR分区表支持的硬盘单个分区最大容量为2TB&#xff0c;最多可以有4个主分区。parted 支持 MBR分区表 和 GPT分区表&…...

VisualStudio2019受支持的.NET Core

1.VS Studio2019受支持的.NET Core&#xff1f; 适用于 Visual Studio 的 .NET SDK 下载 (microsoft.com) Visual Studio 2019 默认并不直接支持 .NET 6 及以上版本。要使用 .NET 6 或更高版本&#xff0c;你需要在 Visual Studio 2019 中采取额外步骤&#xff0c;比如安装相应…...

Java——IO流(二)-(1/7):字符流-FileReader、FileWriter、字符输出流的注意事项(构造器及常用方法、小结)

目录 文件字符输入流-读字符数据进来 介绍 构造器及常用方法 实例演示 文件字符输出流-写字符数据出去 介绍、构造器及常用方法 实例演示 字符输出流使用时的注意事项 小结 文件字符输入流-读字符数据进来 介绍 FileReader&#xff08;文件字符输入流&#xff09; 作…...

Spring循环依赖问题——从源码画流程图

文章目录 关键代码相关知识为什么要使用二级缓存为什么要使用三级缓存只使用两个缓存的问题不能解决构造器循环依赖为什么多例bean不能解决循环依赖问题初始化后代理对象赋值给原始对象解决循环依赖SpringBoot开启循环依赖 循环依赖 在线流程图 关键代码 从缓存中查询getSingl…...

Android SurfaceFlinger——动画播放准备(十五)

BootAnimation 本质上是一个线程,执行 run 之后,会先执行 readyToRun,接着执行 treadLoop 方法。 一、线程启动 1、BootAnimation 源码位置:/frameworks/base/cmds/bootanimation/BootAnimation.cpp readyToRun status_t BootAnimation::readyToRun() {// 添加默认资源…...

Zynq7000系列FPGA中的DMA控制器简介(二)

AXI互连上的DMA传输 所有DMA事务都使用AXI接口在PL中的片上存储器、DDR存储器和从外设之间传递数据。PL中的从设备通过DMAC的外部请求接口与DMAC通信&#xff0c;以控制数据流。这意味着从设备可以请求DMA交易&#xff0c;以便将数据从源地址传输到目标地址。 虽然DMAC在技术…...

获取 url 地址栏 ? 后面的查询字符串,并以键值对形式放到对象里面

写在前面 在前端面试当中&#xff0c;关于 url 相关的问题很常见&#xff0c;而对于 url 请求参数的问题也很常见&#xff0c;大部分以笔试题常见&#xff0c;今天就根据这道面试题一起来看一下。 问题 获取 url 地址栏?后面的查询字符串&#xff0c;并以键值对形式放到对象…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...