AI 与 Python 实战干货:基于深度学习的图像识别
《AI 与 Python 实战干货:基于深度学习的图像识别》
今天咱不啰嗦,直接上干货!
在 AI 领域,特别是图像识别方面,Python 简直是一把利器。咱就以手写数字识别为例,来看看怎么用 Python 实现一个深度学习模型。
首先,准备工作得做好。我们需要导入一些关键的库,比如 tensorflow
、 numpy
等。
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.utils import to_categorical
接下来,加载数据并进行预处理。
(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)x_train = x_train.astype('float32')
x_test = x_test.astype('float32')x_train /= 255
x_test /= 255y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
然后,构建我们的模型。
model = Sequential([Flatten(input_shape=(28, 28, 1)),Dense(128, activation='relu'),Dense(10, activation='softmax')
])
再对模型进行编译和训练。
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test))
训练完成后,我们可以在测试集上评估模型的性能。
loss, accuracy = model.evaluate(x_test, y_test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")
这就是一个基本的手写数字识别模型的实现过程。通过不断调整参数、增加层数、优化激活函数等,还能进一步提高模型的性能。
在 AI 开发中,还有很多技巧和注意事项。比如,数据增强可以增加数据的多样性,防止过拟合;使用回调函数可以在训练过程中进行动态调整,比如早停法可以避免过度训练。
我的 PlugLink
项目网址:https://github.com/zhengqia/PlugLink 。
相关文章:
AI 与 Python 实战干货:基于深度学习的图像识别
《AI 与 Python 实战干货:基于深度学习的图像识别》 今天咱不啰嗦,直接上干货! 在 AI 领域,特别是图像识别方面,Python 简直是一把利器。咱就以手写数字识别为例,来看看怎么用 Python 实现一个深度学习模…...

万字长文详解数据结构:树 | 第6章 | Java版大话数据结构 | 二叉树 | 哈夫曼树 | 二叉树遍历 | 构造二叉树 | LeetCode练习
📌本篇分享的大话数据结构中🎄树🎄这一章的知识点,在此基础上,增加了练习题帮助大家理解一些重要的概念✅;同时,由于原文使用的C语言代码,不利于学习Java语言的同学实践,…...

NPOI入门指南:轻松操作Excel文件的.NET库
目录 引言 一、NPOI概述 二、NPOI的主要用途 三、安装NPOI库 四、NPOI基本使用 六、性能优化和内存管理 七、常见问题与解决方案 八、结论 附录 引言 Excel文件作为数据处理的重要工具,广泛应用于各种场景。然而,在没有安装Microsoft Office的…...

【高性能服务器】服务器概述
🔥博客主页: 我要成为C领域大神🎥系列专栏:【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 服务器概述 服…...
003 SSM框架整合
文章目录 整合web.xmlapplicationContext-dao.xmlapplicationContext-service.xmlspringmvc.xmldb.propertieslog4j.propertiespom.xml 测试sqlItemController.javaItemMapper.javaItem.javaItemExample.javaItemService.javaItemServiceImpl.javaItemMapper.xml 整合 将工程的…...

web刷题记录(7)
[HDCTF 2023]SearchMaster 打开环境,首先的提示信息就是告诉我们,可以用post传参的方式来传入参数data 首先考虑的还是rce,但是这里发现,不管输入那种命令,它都会直接显示在中间的那一小行里面,而实际的命令…...

【单片机毕业设计选题24037】-基于STM32的电力系统电力参数无线监控系统
系统功能: 系统上电后,OLED显示“欢迎使用电力监控系统请稍后”,两秒后显示“Waiting..”等待ESP8266初始化完成, ESP8266初始化成功后进入正常页面显示, 第一行显示电压值(单位V) 第二行显示电流值&am…...
Python使用彩虹表来尝试对MD5哈希进行破解
MD5是一种散列算法,它是不可逆的,无法直接解密。它的主要作用是将输入数据进行散列,生成一个固定长度的唯一哈希值。 然而,可以使用预先计算好的MD5哈希值的彩虹表(Rainbow Table)来尝试对MD5进行破解。彩…...

数据恢复篇: 如何在数据丢失后恢复照片
数据丢失的情况并不少见。如果您曾经遇到过图像丢失的情况,您可能想过照片恢复工具是如何工作的?可能会丢失多少数据图像?即使是断电也可能导致照片和媒体文件丢失。 话虽如此,如果你认为删除的照片无法恢复,那你就错…...
c++ 引用第三方库
文章目录 背景编写cmake代码里引用测试 背景 遇到一个c项目,想跑一些示例。了解下如何直接引用第三方库。 编写cmake 项目结构 myprojectincludexx.hmain.cppCMakeLists.txt CMakeLists.txt cmake_minimum_required(VERSION 3.28) project(velox_demo)set(CM…...

[数据集][目标检测]猪只状态吃喝睡站检测数据集VOC+YOLO格式530张4类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):530 标注数量(xml文件个数):530 标注数量(txt文件个数):530 标注类别…...
Redis中设置验证码
限制一分钟内最多发送5次,且每次有效时间是5分钟! String 发送验证码(phoneNumber) {key "shortMsg:limit:" phoneNumber;// 设置过期时间为 1 分钟(60 秒)// 使⽤ NX,只在不存在 key 时才能设置成功bool…...
使用hadoop进行数据分析
Hadoop是一个开源框架,它允许分布式处理大数据集群上的大量数据。Hadoop由两个主要部分组成:HDFS(Hadoop分布式文件系统)和MapReduce。以下是使用Hadoop进行数据分析的基本步骤: 数据准备: 将数据存储在HDF…...

架构师篇-7、企业安全架构设计及实践
摘要: 认识企业安全架构企业安全案例分析及实践 内容: 为什么做企业安全架构怎么做好安全架构设计案例实践分析&随堂练 为什么要做企业安全架构 安全是麻烦制造者? 整天提安全需求增加开发工作增加运维要求增加不确定性延后业务上线…...
递归算法~快速排序、归并排序
递归排序是一种基于分治法的排序算法,最典型的例子就是快速排序和归并排序。这两种算法都利用递归将问题分解成更小的子问题,然后将子问题的解合并以得到原始问题的解。 1、快速排序(Quick Sort) 快速排序的基本思想是选择一个基…...

DarkGPT:基于GPT-4-200k设计的人工智能OSINT助手
关于DarkGPT DarkGPT是一款功能强大的人工智能安全助手,该工具基于GPT-4-200k设计并实现其功能,可以帮助广大研究人员针对泄露数据库进行安全分析和数据查询相关的OSINT操作。 工具要求 openai1.13.3 requests python-dotenv pydantic1.10.12 工具安装 …...

RAG 检索增强生成有效评估
我们将介绍RAG(检索增强生成)的评估工作流程 RAG工作流程的部分 数据集 这里是我们将要使用的LCEL (LangChain Expression Language)相关问题的数据集。 这个数据集是在LangSmith UI中使用csv上传创建的: https://smith.langchain.com/public/730d833b-74da-43e2-a614-4e2ca…...

Day38:LeedCode 1049. 最后一块石头的重量 II 494. 目标和 474.一和零
1049. 最后一块石头的重量 II 有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x < y。那么粉碎的可能结果…...
sqlalchemy分页查询
sqlalchemy分页查询 在SQLAlchemy中,可以使用limit和offset方法实现分页查询 from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from models import MyModel # 假设MyModel是你定义的模型# 连接数据库 engine = create_engine(sqlite:///myd…...

Java--常用类APl(复习总结)
前言: Java是一种强大而灵活的编程语言,具有广泛的应用范围,从桌面应用程序到企业级应用程序都能够使用Java进行开发。在Java的编程过程中,使用标准类库是非常重要的,因为标准类库提供了丰富的类和API,可以简化开发过…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...