【后端面试题】【中间件】【NoSQL】ElasticSearch索引机制和高性能的面试思路
Elasticsearch的索引机制
Elasticsearch使用的是倒排索引,所谓的倒排索引是相对于正排索引而言的。
在一般的文件系统中,索引是文档映射到关键字,而倒排索引则相反,是从关键字映射到文档。
如果没有倒排索引的话,想找到包含关键字“Elasticsearch”的文档,需要遍历所有的文档,然后筛选出包含了“Elasticsearch”关键字的文档。有了倒排索引,就可以直接从关键字出发,找到“Elasticsearch”关键字对应的文档。
Elasticsearch依赖Lucene来维护索引,基本原理如下:
- 每次写入一个新的文档的时候,根据文档的每一个字段,Elasticsearch会使用分词器,把每个字段的值切割成一个个关键词,每一个关键词也叫做Term
- 切割之后,Elasticsearch会统计每一个关键词出现的频率,构建一个关键词到文档ID、出现频率、位置的映射,叫做
posting list

从图片里可以看到几个关键点:
- 每个字段是分散统计的
- Elasticsearch记录了两个位置信息,一个位置指的是它是第几个词,另一个偏移量指的是整个关键词的起始位置。比如World在文档0的desc里是第1个词(从0开始),它的位置是从Hello World的起始位置算的第6位字符到11位字符。
存在Elasticsearch里的文档很多,一个字段会有非常多的关键词。假设要查询的是desc里包含Hello这个关键字的文档,首先在关键词表格里找到Hello这一条。如果关键词是随机的,肯定很难找。
如果让你来设计的话,可以考虑把这些关键词排序,比如按字母来排序。但是这种类似查找单词的东西,在业界早就有成熟的方案,就是前缀树,也叫做字典树。
这个关键词表格在Elasticsearch里叫Term Dictionary。它们的目标是尽可能地把全部关键词组成地索引整个装进内存里。
之所以是尽可能,而不是一定,是因为部分字段的关键词非常多,确定装不进去。
Elastiscearch更进一步用了一个优化,就是FST(Finite State Transducers),核心思想是连公共前缀、后缀也一起压缩了。
最基本的概念如下:
假设有两个关键词cat和ct,两种数据结构看起来是这样的

当你找到3的时候,如果经过0-1-3,就知道前缀是ct,并且能够得到ct在Term Dictionary(关键词表格)的位置,这个位置也是ct所在的Block。
如果有其他的关键词,cta、ctb等,都是用这个前缀的,当几千个关键词都共享某个前缀的时候,在一个Block内部怎么找?
Elasticsearch会在Block内部有很多关键词的时候,进一步切割成所谓的Floor Block,每个Floor Block使用第一个关键词的首字母来加快查找。
在Block或Floor Block内部,是通过遍历来查找对应的关键词的,整个结构看起来是下面这样

可以把查找关键词的过程理解为两步
- 根据FST找到Block
- 在Block里遍历找到关键词。如果Block进一步细分为Floor Block,就先根据前缀找到Floor Block,然后再去遍历Floor Block。
找到了关键词,也就找到了这个关键词对应的posting list,可以根据文档ID来找到具体的文档了。
面试准备
还要清楚公司内部一些和Elasticsearch有关的数据
- Elasticsearch是如何部署的?有几个节点?每个节点上面内存有多大?这些内存是怎么分配的?
- Elasticsearch上JVM的配置是什么?垃圾回收用的哪个?垃圾回收停顿的实践多长?
- Elasticsearch的哪些配置和默认值不一样,为什么修改?
- Elasticsearch性能如何,能够撑住多大的读写流量
如果本身对Elasticsearch性能优化不是很了解的话,不特别建议在简历或自我介绍的时候提起Elasticsearch性能优化。但是如果很擅长,可以特意强调一下,足以称为竞争优势。
相关文章:
【后端面试题】【中间件】【NoSQL】ElasticSearch索引机制和高性能的面试思路
Elasticsearch的索引机制 Elasticsearch使用的是倒排索引,所谓的倒排索引是相对于正排索引而言的。 在一般的文件系统中,索引是文档映射到关键字,而倒排索引则相反,是从关键字映射到文档。 如果没有倒排索引的话,想找…...
【漏洞复现】时空智友ERP updater.uploadStudioFile接口处存在任意文件上传
0x01 产品简介 时空智友ERP是一款基于云计算和大数据技术的企业资源计划管理系统。该系统旨在帮助企业实现数字化转型,提高运营效率、降低成本、增强决策能力和竞争力,时空智友ERP系统涵盖了企业的各个业务领域,包括财务管理、供应链管理、生…...
[leetcode hot 150]第五百三十题,二叉搜索树的最小绝对差
题目: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 解析: minDiffInBST 方法是主要方法。创建一个 ArrayList 来存储树的节点值。inorderTrave…...
【Docker】可视化平台Portainer
文章目录 Portainer的特点Portainer的安装步骤注意事项 Docker的可视化工具Portainer是一个轻量级的容器管理平台,它为用户提供了一个直观的图形界面来管理Docker环境。以下是关于Portainer的详细介绍和安装步骤: Portainer的特点 轻量级:P…...
MySQL高级-MVCC-原理分析(RR级别)
文章目录 1、RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView2、总结 1、RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView 而RR 是可重复读,在一个事务中&…...
压力测试Monkey命令参数和报告分析
目录 常用参数 -p <测试的包名列表> -v 显示日志详细程度 -s 伪随机数生成器的种子值 --throttle < 毫秒> --ignore-crashes 忽略崩溃 --ignore-timeouts 忽略超时 --monitor-native-crashes 监视本地崩溃代码 --ignore-security-exceptions 忽略安全异常 …...
C# Benchmark
创建控制台项目(或修改现有项目的Main方法代码),Nget导入Benchmark0.13.12,创建测试类: public class StringBenchMark{int[] numbers;public StringBenchMark() {numbers Enumerable.Range(1, 20000).ToArray();}[Be…...
算法金 | 协方差、方差、标准差、协方差矩阵
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 1. 方差 方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在…...
FastAPI教程II
本文参考FastAPI教程https://fastapi.tiangolo.com/zh/tutorial Cookie参数 定义Cookie参数与定义Query和Path参数一样。 具体步骤如下: 导入Cookie:from fastapi import Cookie声明Cookie参数,声明Cookie参数的方式与声明Query和Path参数…...
Facebook的投流技巧有哪些?
相信大家都知道Facebook拥有着巨大的用户群体和高转化率,在国外社交推广中的影响不言而喻。但随着Facebook广告的竞争越来越激烈,在Facebook广告上获得高投资回报率也变得越来越困难。IPIDEA代理IP今天就教大家如何在Facebook上投放广告的技巧࿰…...
Spring Boot 中的微服务监控与管理
微服务的概述 微服务架构的优点和挑战 优点: 灵活性和可扩展性:微服务架构允许每个服务单独部署和扩展,这使得系统可以更灵活地适应不同的业务需求和负载变化。 使团队更加聚焦:每个微服务都有明确的职责,这使得开发团队可以更加聚焦,专注于开发他们的服务。 技术和框…...
【计算机网络】期末复习(1)模拟卷
一、选择题 1. 电路交换的三个阶段是建立连接、()和释放连接 A. Hello包探测 B. 通信 C. 二次握手 D. 总线连接 2. 一下哪个协议不属于C/S模式() A. SNMP…...
【软件工程中的演化模型及其优缺点】
文章目录 1. 增量模型什么是增量模型?优点缺点 2. 增量-迭代模型什么是增量-迭代模型?优点缺点 3. 螺旋模型什么是螺旋模型?优点缺点 1. 增量模型 什么是增量模型? 增量模型是一种逐步增加功能和特性的开发方法。项目被划分为多…...
Oracle 数据库详解:概念、结构、使用场景与常用命令
1. 引言 Oracle 数据库作为全球领先的关系型数据库管理系统(RDBMS),在企业级应用中占据了重要地位。本文将详细介绍Oracle数据库的核心概念、架构、常用操作及其广泛的使用场景,旨在为读者提供全面而深入的理解。 2. Oracle 数据…...
FreeRTOS的裁剪与移植
文章目录 1 FreeRTOS裁剪与移植1.1 FreeRTOS基础1.1.1 RTOS与GPOS1.1.2 堆与栈1.1.3 FreeRTOS核心文件1.1.4 FreeRTOS语法 1.2 FreeRTOS移植和裁剪 1 FreeRTOS裁剪与移植 1.1 FreeRTOS基础 1.1.1 RTOS与GPOS 实时操作系统(RTOS):是指当…...
能求一个数字的字符数量的程序
目录 开头程序程序的流程图程序输入与打印的效果例1输入输出 例2输入输出 关于这个程序的一些实用内容结尾 开头 大家好,我叫这是我58,今天,我们先来看一下下面的程序。 程序 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>…...
PTA-线性表实验(JAVA)
题目1:Josephus环的问题及算法 【实验内容】 编程实现如下功能: 题意说明:古代某法官要判决n个犯人的死刑,他有一条荒唐的法律,将犯人站成一个圆圈,从第start个犯人开始数起,每数到第distance的…...
LeetCode:494. 目标和
题目 给你一个非负整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 ‘’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 : 例如,nums [2, 1] ,可以在 2 之前添加 ‘’ ,在 1 之前添…...
HarmonyOS Next开发学习手册——选项卡 (Tabs)
当页面信息较多时,为了让用户能够聚焦于当前显示的内容,需要对页面内容进行分类,提高页面空间利用率。 Tabs 组件可以在一个页面内快速实现视图内容的切换,一方面提升查找信息的效率,另一方面精简用户单次获取到的信息…...
LeetCode2710.移除字符串中的尾随零
cpp class Solution { public:string removeTrailingZeros(string num) {int flag 0;string s num;int size num.length();for (int i num.length() - 1; i > 0; i--) {if (num[i] ! 0)break;if (num[i] 0) {size--;}}s.resize(size);return s;} };...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
算法刷题-回溯
今天给大家分享的还是一道关于dfs回溯的问题,对于这类问题大家还是要多刷和总结,总体难度还是偏大。 对于回溯问题有几个关键点: 1.首先对于这类回溯可以节点可以随机选择的问题,要做mian函数中循环调用dfs(i&#x…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...
RKNN开发环境搭建2-RKNN Model Zoo 环境搭建
目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程. 本…...
