智能分析赋能等保:大数据技术在安全审计记录中的应用
随着信息技术的飞速发展,大数据技术在各行各业中的应用愈发广泛,特别是在网络安全领域,大数据技术为安全审计记录提供了强有力的支撑。本文将深入探讨智能分析如何赋能等保(等级保护),以及大数据技术在安全审计记录中的实际应用,旨在提升网络安全防护水平,保障信息系统的稳定运行。
一、智能分析在等保中的应用背景
等保是我国信息安全领域的重要制度,旨在通过对信息系统进行分等级保护,确保国家秘密、商业秘密和个人隐私的安全。然而,随着网络攻击手段的不断升级和变化,传统的安全审计记录方法已难以满足现代网络安全的需求。智能分析作为一种新兴的技术手段,具有自动化、智能化和高效化的特点,能够实现对安全审计记录的深度挖掘和分析,为等保提供有力的技术支撑。
二、大数据技术在安全审计记录中的应用
1. 数据采集与存储
大数据技术能够实现对海量安全审计数据的实时采集和存储,确保数据的完整性和准确性。通过部署分布式数据采集系统,可以实现对不同来源、不同格式的安全审计数据进行统一收集和整合,为后续的数据分析和挖掘提供有力保障。
2. 数据预处理
安全审计数据往往存在数据冗余、数据噪声等问题,需要通过数据预处理技术进行清洗和转换。大数据技术可以运用数据清洗、数据转换、数据压缩等技术手段,对原始数据进行预处理,提高数据质量和可用性。
3. 数据分析与挖掘
大数据技术能够运用机器学习、深度学习等算法对安全审计数据进行深度分析和挖掘,发现潜在的安全风险和威胁。通过对数据的关联分析、聚类分析、异常检测等,可以揭示出攻击者的行为模式和攻击路径,为安全防护提供有力支持。
4. 可视化展示
大数据技术能够将分析结果以图表、图像等形式进行可视化展示,帮助安全人员直观地了解安全态势和潜在风险。通过数据可视化技术,可以实现对安全审计数据的实时监控和预警,提高安全防护的响应速度和准确性。
三、智能分析赋能等保的实际案例
以某金融机构为例,该机构通过引入大数据技术和智能分析技术,实现了对安全审计记录的深度挖掘和分析。首先,该机构部署了分布式数据采集系统,实现了对全行范围内的安全审计数据的实时采集和存储。然后,运用数据预处理技术对原始数据进行清洗和转换,提高了数据质量和可用性。接着,运用机器学习算法对安全审计数据进行深度分析和挖掘,发现了多起潜在的安全风险和威胁。最后,通过数据可视化技术将分析结果进行展示,帮助安全人员及时发现并处置安全风险。
通过引入大数据技术和智能分析技术,该金融机构的安全防护能力得到了显著提升。不仅降低了安全风险的发生概率,还提高了安全防护的响应速度和准确性。同时,该技术还为该机构提供了丰富的安全数据资产和决策支持信息,为业务的稳健发展提供了有力保障。
四、展望与挑战
随着大数据技术和智能分析技术的不断发展和完善,其在安全审计记录中的应用将越来越广泛。未来,我们可以期待更加高效、智能的安全审计记录分析方法出现,为等保提供更加有力的技术支撑。然而,我们也面临着一些挑战和困难,如数据隐私保护、算法安全等问题需要我们进一步研究和解决。
总之,智能分析赋能等保是网络安全领域的重要发展方向之一。通过运用大数据技术和智能分析技术,我们可以实现对安全审计记录的深度挖掘和分析,提高安全防护的水平和能力。同时,我们也需要关注数据隐私保护和算法安全等问题,确保技术的安全可靠性。
相关文章:
智能分析赋能等保:大数据技术在安全审计记录中的应用
随着信息技术的飞速发展,大数据技术在各行各业中的应用愈发广泛,特别是在网络安全领域,大数据技术为安全审计记录提供了强有力的支撑。本文将深入探讨智能分析如何赋能等保(等级保护),以及大数据技术在安全…...
Django中,update_or_create()
在Django中,可以使用update_or_create()方法来更新现有记录或创建新记录。该方法接受一个字典作为参数,用于指定要更新或创建的字段和对应的值。 update_or_create()方法的语法如下: 代码语言:python obj, created Model.obje…...
每日一学(1)
目录 1、ConCurrentHashMap为什么不允许key为null? 2、ThreadLocal会出现内存泄露吗? 3、AQS理解 4、lock 和 synchronized的区别 1、ConCurrentHashMap为什么不允许key为null? 底层 putVal方法 中 如果key || value为空 抛出…...
SpringMVC(1)——入门程序+流程分析
MVC都是哪三层?在Spring里面分别对应什么?SpringMVC的架构是什么? 我们使用Spring开发JavaWeb项目,一般都是BS架构,也就是Browser(浏览器)-Server(服务器)架构 这种架构…...
成绩发布背后:老师的无奈与痛点
在教育的广阔天地里,教师这一角色承载着无数的期望与责任。他们不仅是知识的传播者,更是学生心灵的引路人。而对于班主任老师来说,他们的角色更加多元,他们不仅是老师,还必须是“妈妈”。除了像其他老师一样备课、上课…...
MySQL 索引之外的相关查询优化总结
在这之前先说明几个概念: 1、驱动表和被驱动表:驱动表是主表,被驱动表是从表、非驱动表。驱动表和被驱动表并非根据 from 后面表名的先后顺序而确定,而是根据 explain 语句查询得到的顺序确定;展示在前面的是驱动表&am…...
EE trade:贵金属投资的优点及缺点
贵金属(如黄金、白银、铂金和钯金)一直以来都是重要的投资和避险工具。它们具有独特的物理和化学特性,广泛应用于各种行业,同时也被视为财富储备。在进行贵金属投资时,了解其优点和缺点对于做出明智的投资决策至关重要。 一、贵金属投资的优…...
python工作目录与文件目录
工作目录 文件目录:文件所在的目录 工作目录:执行python命令所在的目录 D:. | main.py | ---data | data.txt | ---model | | model.py | | train.py | | __init__.py | | | ---nlp | | | bert.py | …...
可信和可解释的大语言模型推理-RoG
大型语言模型(LLM)在复杂任务中表现出令人印象深刻的推理能力。然而,LLM在推理过程中缺乏最新的知识和经验,这可能导致不正确的推理过程,降低他们的表现和可信度。知识图谱(Knowledge graphs, KGs)以结构化的形式存储了…...
秋招季的策略与行动指南:提前布局,高效备战,精准出击
6月即将进入尾声,一年一度的秋季招聘季正在热火进行中。对于即将毕业的学生和寻求职业发展的职场人士来说,秋招是一个不容错过的黄金时期。 秋招的序幕通常在6月至9月间拉开,名企们纷纷开启网申的大门。在此期间,求职备战是一个系…...
Java并发编程-wait与notify详解及案例实战
文章目录 概述wait()notify()作用注意事项用wait与notify手写一个内存队列wait与notify的底层原理:monitor以及wait_setMonitor(监视器)Wait Set(等待集合)Wait() 原理Notify() / NotifyAll() 原理注意事项wait与notify在代码中使用时的注意事项总结案例实战:基于wait与not…...
204.贪心算法:分发饼干(力扣)
以下来源于代码随想录 class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {// 对孩子的胃口进行排序sort(g.begin(), g.end());// 对饼干的尺寸进行排序sort(s.begin(), s.end());int index s.size() - 1; // 从最大的饼…...
AI奥林匹克竞赛:Claude-3.5-Sonnet对决GPT-4o,谁是最聪明的AI?
目录 实验设置 评估对象 评估方法 结果与分析 针对学科的细粒度分析 GPT-4o vs. Claude-3.5-Sonnet GPT-4V vs. Gemini-1.5-Pro 结论 AI技术日新月异,Anthropic公司最新发布的Claude-3.5-Sonnet因在知识型推理、数学推理、编程任务及视觉推理等任务上设立新…...
【C++】const修饰成员函数
const修饰成员函数 常函数: 成员函数后加const后我们称为这个函数为常函数 常函数内不可以修改成员属性 成员属性声明时加关键字mutable后,在常函数中依然可以修改 class Animal { public:void fun1(){//这是一个普通的成员函数 }void fun2…...
基于模糊神经网络的时间序列预测(以hopkinsirandeath数据集为例,MATLAB)
模糊神经网络从提出发展到今天,主要有三种形式:算术神经网络、逻辑模糊神经网络和混合模糊神经网络。算术神经网络是最基本的,它主要是对输入量进行模糊化,且网络结构中的权重也是模糊权重;逻辑模糊神经网络的主要特点是模糊权值可…...
Java web应用性能分析之【prometheus监控K8s指标说明】
常规k8s的监控指标 单独 1、集群维度 集群状态集群节点数节点状态(正常、不可达、未知)节点的资源使用率(CPU、内存、IO等) 2、应用维度 应用响应时间 应用的错误率 应用的请求量 3、系统和集群组件维度 API服务器状态控…...
Spring Boot中的应用配置文件管理
Spring Boot中的应用配置文件管理 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨Spring Boot中的应用配置文件管理。在现代的软件开发中&am…...
SCCB协议介绍,以及与IIC协议对比
在之前的文章里已经介绍了IIC协议:iic通信协议 这篇内容主要介绍一下SCCB协议。 文章目录 SCCB协议:SCCB时序图iic时序图SCCB时序 VS IIC时序 总:SCCB协议常用在摄像头配置上面,例如OV5640摄像头,和IIC协议很相似&…...
K8S基础简介
用于自动部署,扩展和管理容器化应用程序的开源系统。 功能: 服务发现和负载均衡; 存储编排; 自动部署和回滚; 自动二进制打包; 自我修复; 密钥与配置管理; 1. K8S组件 主从方式架…...
Studying-代码随想录训练营day24| 93.复原IP地址、78.子集、90.子集II
第24天,回溯算法part03,牢记回溯三部曲,掌握树形结构结题方法💪 目录 93.复原IP地址 78.子集 90.子集II 总结 93.复原IP地址 文档讲解:代码随想录复原IP地址 视频讲解:手撕复原IP地址 题目࿱…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
