安装和微调大模型(基于LLaMA-Factory)
-
打开终端(在Unix或macOS上)或命令提示符/Anaconda Prompt(在Windows上)。
-
创建一个名为
lora的虚拟环境并指定Python版本为3.9。
https://github.com/echonoshy/cgft-llm/blob/master/llama-factory/README.md
GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMs
conda create --n lora python=3.9
- 激活新创建的虚拟环境。
conda activate lora
- 克隆项目。
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
- 安装Python依赖项。由于您已经有了依赖项的列表,您可以使用
pip来安装它们。
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install transformers_stream_generator bitsandbytes tiktoken auto-gptq optimum autoawq -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install --upgrade tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple
- 运行代码。
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/webui.py
当您完成工作后,您可以停用虚拟环境。
llamafactory-cli train cust/train_llama3_lora_sft.yaml
conda deactivate
请确保您已经有了conda命令行工具,并且已经添加到您的系统环境变量中。如果您还没有安装conda,您可以从Anaconda或Miniconda官网下载并安装。
请注意,如果您在安装过程中遇到任何依赖性问题,您可能需要根据错误信息调整包的版本或安装顺序。
微调命令
(构建 cust/train_llama3_lora_sft.yaml)
(命令行执行:llamafactory-cli train cust/train_llama3_lora_sft.yaml)
(打开ui: llamafactory-cli webchat cust/train_llama3_lora_sft.yaml)
cutoff_len: 1024
dataset: fintech,identity
dataset_dir: data
do_train: true
finetuning_type: lora
flash_attn: auto
fp16: true
gradient_accumulation_steps: 8
learning_rate: 0.0002
logging_steps: 5
lora_alpha: 16
lora_dropout: 0
lora_rank: 8
lora_target: q_proj,v_proj
lr_scheduler_type: cosine
max_grad_norm: 1.0
max_samples: 1000
model_name_or_path: /root/autodl-tmp/models/Llama3-8B-Chinese-Chat
num_train_epochs: 10.0
optim: adamw_torch
output_dir: saves/LLaMA3-8B-Chinese-Chat/lora/train_2024-05-25-20-27-47
packing: false
per_device_train_batch_size: 2
plot_loss: true
preprocessing_num_workers: 16
report_to: none
save_steps: 100
stage: sft
template: llama3
use_unsloth: true
warmup_steps: 0
合并
llamafactory-cli export cust/merge_llama3_lora_sft.yaml
### 上面文件内容Note: DO NOT use quantized model or quantization_bit when merging lora adapters### model
model_name_or_path: /media/ldx/陈启的机械硬盘/models/Llama3-8B-Chinese-Chat1/
adapter_name_or_path: /home/ldx/LLaMA-Factory/saves/LLaMA3-8B-Chinese-Chat/lora/train_2024-07-01-20-27-47
template: llama3
finetuning_type: lora### export
export_dir: /media/ldx/陈启的机械硬盘/models/Llama3-8B-Chinese-Chat-cq/
export_size: 4
export_device: cuda
export_legacy_format:
API对话
# 指定多卡和端口
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000
llamafactory-cli api cust/train_llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api --model_name_or_path megred-model-path --template llama3 --infer_backend vllm --vllm_enforce_eager
from openai import OpenAI# autodl 中指令
# CUDA_VISIBLE_DEVICES=0 nohup python -m vllm.entrypoints.openai.api_server --model /autodl-tmp/LLM-Research/Meta-Llama-3-8B-Instruct --served-model-name Meta-Llama-3-8B-Instruct --dtype=half > vllm_test.out &# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"client = OpenAI(api_key=openai_api_key,base_url=openai_api_base,
)chat_response = client.chat.completions.create(model="Meta-Llama-3-8B-Instruct",messages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "你是谁?"},]
)
print("Chat response:", chat_response.choices)
终端对话
llamafactory-cli chat cust/train_llama3_lora_sft.yaml
UI对话
llamafactory-cli webchat cust/train_llama3_lora_sft.yaml
相关文章:
安装和微调大模型(基于LLaMA-Factory)
打开终端(在Unix或macOS上)或命令提示符/Anaconda Prompt(在Windows上)。 创建一个名为lora的虚拟环境并指定Python版本为3.9。 https://github.com/echonoshy/cgft-llm/blob/master/llama-factory/README.mdGitHub - hiyouga/…...
使用docker搭建squid和ss5
docker run -d --name squid-container -e TZAsia/Shanghai -p 自定义端口并记得开放:3128 ubuntu/squid docker exec -it squid-container /bin/bash apt update && apt install vim # 修改 http_port 3128 为 http_port 0.0.0.0:3128 # 修改 http_access deny all 为…...
大数据面试题之Flink(1)
目录 Flink架构 Flink的窗口了解哪些,都有什么区别,有哪几种?如何定义? Flink窗口函数,时间语义相关的问题 介绍下Flink的watermark(水位线),watermark需要实现哪个实现类,在何处定义?有什么作用? Flink的…...
策略模式、工厂模式和模板模式的应用
1、策略模式、工厂模式解决if else Cal package com.example.dyc.cal;import org.springframework.beans.factory.InitializingBean;public interface Cal extends InitializingBean {public Integer cal(Integer a, Integer b); }Cal工厂 package com.example.dyc.cal;impo…...
在postman中调试supabase的API接口
文章目录 在supabase中获取API地址和key知道它的restfull风格在postman中进行的设置1、get请求调试2、post新增用户调试3、使用patch更新数据,不用put!4、delete删除数据 总结 在supabase中获取API地址和key 首先登录dashboard后台,首页- 右…...
微信小程序毕业设计-英语互助系统项目开发实战(附源码+论文)
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:微信小程序毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计…...
【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第49课-机器人自动跳舞
【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第49课-机器人自动跳舞 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎…...
【LLM教程-llama】如何Fine Tuning大语言模型?
今天给大家带来了一篇超级详细的教程,手把手教你如何对大语言模型进行微调(Fine Tuning)!(代码和详细解释放在后文) 目录 大语言模型进行微调(Fine Tuning)需要哪些步骤? 大语言模型进行微调(Fine Tuning)训练过程及代码 大语言…...
PHP 比 Java 的开发效率高在哪?
在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「JAVA的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!!做了几年PHP,最近…...
高德定位获取详细位置失败的处理方法
在使用高德地图定位功能获取位置信息有时候会获取详细位置失败,但是经纬度是有的,这种情况下怎么处理呢,可以使用逆地理编码通过返回的经纬度来再次获取位置信息,如果再次失败那么获取详细位置信息就失败了。 具体工具类如下: package com.demo.map.utils;import androi…...
PX2平台Pytorch源码编译
写在前面:以下内容完成于2019年底,只是把笔记放到了CSDN上。 需要注释掉NCLL及分布式相关的配置 libcudart.patch diff --git a/torch/cuda/__init__.py b/torch/cuda/__init__.py index 4591702..07e1268 100644 --- a/torch/cuda/__init__.pyb/torc…...
昇思25天学习打卡营第6天|简单的深度学习模型实战 - 函数式自动微分
自动微分(Automatic Differentiation)是什么?微分是函数在某一处的导数值,自动微分就是使用计算机程序自动求解函数在某一处的导数值。自动微分可用于计算神经网络反向传播的梯度大小,是机器学习训练中不可或缺的一步。 这些公式难免让人头大…...
基于Linux的云端垃圾分类助手
项目简介 本项目旨在开发一个基于嵌入式系统的智能垃圾分类装置。该装置能够通过串口通信、语音播报、网络通信等多种方式,实现垃圾的自动识别和分类投放。系统采用多线程设计,确保各功能模块高效并行工作。 项目功能 垃圾分类识别 系统使用摄像头拍摄…...
【PYG】Planetoid中边存储的格式,为什么打印前十条边用edge_index[:, :10]
edge_index 是 PyTorch Geometric 中常用的表示图边的张量。它通常是一个形状为 [2, num_edges] 的二维张量,其中 num_edges 表示图中边的数量。每一列表示一条边,包含两个节点的索引。 实际上这是COO存储格式,官方文档里也有写,…...
【知识图谱系列】(实例)python操作neo4j构建企业间的业务往来的知识图谱
本章节通过聚焦于"金额"这一核心属性,构建了一幅知识图谱,旨在揭示"销售方"与"购买方"间的商业互动网。在这张图谱中,绿色节点象征着购买方,而红色节点则代表了销售方。这两类节点间的紧密连线&…...
解决MySQL删除/var/lib/mysql下的所有文件后无法启动的问题
解决MySQL删除/var/lib/mysql下的所有文件后无法启动的问题 确保清空/var/lib/mysql初始化启动mysql参考 确保清空/var/lib/mysql rm-rf /var/lib/mysql/* 初始化 mysql_install_db --usermysql --basedir/usr --datadir/var/lib/mysql 其中的mysql用户不要改成root。否则会…...
探索WebKit的Flexbox奇境:CSS Flexbox支持全解析
探索WebKit的Flexbox奇境:CSS Flexbox支持全解析 在现代网页设计中,响应式布局的需求日益增长,CSS Flexbox作为布局模式的一个突破性进展,提供了一种更加高效和灵活的方式来设计复杂的用户界面。WebKit,作为众多流行浏…...
Unity--协程--Coroutine
Unity–协程–Coroutine 1. 协程的基本概念 基本概念:不是线程,将代码按照划分的时间来执行,这个时间可以是具体的多少秒,也可以是物理帧的时间,也可以是一帧的绘制结束的时间。 协程的写法:通过返回IEnumerator的函数实现,使用yield return语句暂停执…...
详解COB显示屏的技术特点
COB(Chip on Board)显示屏作为一种采用倒装COB封装技术的LED显示屏,在显示效果以及使用稳定性跟防护性方面,拥有更大优势,今天跟随COB显示屏厂家中品瑞科技一起来看看,COB显示屏的技术特点: 1、…...
富唯智能推出的AMR复合机器人铝板CNC上下料方案
随着科技的不断进步,CNC加工行业正面临着前所未有的变革。传统的CNC上下料方式已无法满足现代生产对效率、精度和安全性的高要求。在这样的背景下,富唯智能推出的AMR复合机器人铝板CNC上下料方案,以其智能化、自动化的特点,引领了…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
ArcGIS Pro+ArcGIS给你的地图加上北回归线!
今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等,设置经线、纬线都以10间隔显示。 2、需要插入背会归线…...
结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...
