当前位置: 首页 > news >正文

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

目录

    • 分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.MATLAB实现EMD-KPCA-Transformer多变量时间序列光伏功率预测;

2.多变量时间序列预测 就是先emd把原输入全分解变成很多维作为输入KPCA降维 再输入Transformer预测 ;

3.运行环境Matlab2023b及以上,输出RMSE、R2、MAPE、MAE等多指标对比,

先运行main1_EMD,进行emd分解;再运行main2_KPCA降维;再运行main3_EMD_KPCA_Transformer建模预测。

注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数;

4.运行环境为Matlab2023b及以上;

5.数据集为excel,光伏数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,所有文件放在一个文件夹;

6.命令窗口输出R2、RMSE、MAE、MAPE等多指标评价。

购&买后可加点击文章底部卡片博主咨询交流。注意:其他非官方渠道购&买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

clc;
clear 
close all%% Transformer预测
tic
load origin_data.mat
load emd_data.mat
load KPCA_data.mat%% EMD-KPCA-Transformer预测
tic
disp('…………………………………………………………………………………………………………………………')
disp('EMD-KPCA-Transformer预测')
disp('…………………………………………………………………………………………………………………………')data=[KPCA_data X(:,end)];num_samples = length(data);    % 样本个数 
kim = 5;                       % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(data,2);
res=[];
%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(data(i: i + kim - 1,:), 1, kim*or_dim), data(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

分解降维预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测 目录 分解降维预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测效果一览基本介绍程序设计参…...

【Python】MacBook M系列芯片Anaconda下载Pytorch,并开发一个简单的数字识别代码(附带踩坑记录)

文章目录 配置镜像源下载Pytorch验证使用Pytorch进行数字识别 配置镜像源 Anaconda下载完毕之后,有两种方式下载pytorch,一种是用页面可视化的方式去下载,另一种方式就是直接用命令行工具去下载。 但是由于默认的Anaconda走的是外网&#x…...

自定义控件动画篇(四)ObjectAnimator的使用

ObjectAnimator 是 Android 属性动画框架中的一个重要组件,它允许你针对特定属性的值进行动画处理。与 ValueAnimator 相比,ObjectAnimator 更专注于 UI 组件,可以直接作用于视图的属性,如位置、尺寸、透明度等,而无需…...

实现List接口的ArrayList和LinkedList

package study;import java.util.*;public class day01_list {public static void main(String[] args) {// <Integer> 这个尖括号表示的是 Java 的泛型&#xff08;Generics&#xff09;// 泛型是 Java 5 引入的一项特性&#xff0c;它允许你在 类、接口和方法 中使用类…...

下拉选择输入框(基于elment-ui)

最近在需求中&#xff0c;需要有一个下拉选择功能&#xff0c;又得可以输入&#xff0c;在 element-ui 官网找了&#xff0c;发现没有适合的&#xff0c;然后在修炼 cv 大法的我&#xff0c;也在网上看了一下&#xff0c;但是也都感觉不合适&#xff0c;所以就自己写了两个&…...

CPP入门:日期类的构建

目录 1.日期类的成员 2.日期类的成员函数 2.1构造和析构函数 2.2检查日期合法 2.3日期的打印 2.4操作符重载 2.4.1小于号 2.4.2等于号 2.4.3小于等于号 2.4.4大于号 2.4.5大于等于号 2.4.6不等号 2.4.7加等的实现 2.4.8加的实现 2.4.9减去一个天数的减等实现 2.4.10…...

springboot学习,如何用redission实现分布式锁

目录 一、springboot框架介绍二、redission是什么三、什么是分布式锁四、如何用redission实现分布式锁 一、springboot框架介绍 Spring Boot是一个开源的Java框架&#xff0c;由Pivotal团队&#xff08;现为VMware的一部分&#xff09;于2013年推出。它旨在简化Spring应用程序…...

【MySQL】如果表被锁可以尝试看一下事务

今天在MySQL中删除表的时候&#xff0c;发现无法删除&#xff0c;一执行drop&#xff0c;navicat就卡死。 通过 SHOW PROCESSLIST显示被锁了 kill掉被锁的进程后依旧被锁 最后发现是由于存在为执行完的事务 SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX; kill掉这些事务以…...

Datawhale - 角色要素提取竞赛

文章目录 赛题要求一、赛事背景二、赛事任务三、评审规则1.平台说明2.数据说明3.评估指标4.评测及排行 四、作品提交要求五、 运行BaselineStep1&#xff1a;下载相关库Step2&#xff1a;配置导入Step3&#xff1a;模型测试Step4&#xff1a;数据读取Step5&#xff1a;Prompt设…...

【Sql-驯化】sql中对时间的处理方法技巧总结

【Sql-驯化】sql中对时间的处理方法技巧总结 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; 免费获取相关内容文档关注&#xff1a;微信公众…...

TFD那智机器人仿真离线程序文本转换为现场机器人程序

TFD式样那智机器人离线程序通过Process Simulation、DELMIA等仿真软件为载体给机器人出离线&#xff0c;下载下来的文本程序&#xff0c;现场机器人一般是无法导入及识别出来的。那么就需要TFD on Desk TFD控制器来进行转换&#xff0c;才能导入现场机器人读取程序。 导入的文…...

贪心+后缀和,CF 1903C - Theofanis‘ Nightmare

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 1903C - Theofanis Nightmare 二、解题报告 1、思路分析 我们任意一种分组其实都是若干个后缀和相加 比如我们分成了三组&#xff0c;第一组的数被加了一次&#xff0c;第二组的数被加了两次&#xff0c;第…...

10分钟完成微信JSAPI支付对接过程-JAVA后端接口

引入架包 <dependency><groupId>com.github.javen205</groupId><artifactId>IJPay-WxPay</artifactId><version>${ijapy.version}</version></dependency>配置类 package com.joolun.web.config;import org.springframework.b…...

如何寻找一个领域的顶级会议,并且判断这个会议的影响力?

如何寻找一个领域的顶级会议&#xff0c;并且判断这个会议的影响力&#xff1f; 会议之眼 快讯 很多同学都在问&#xff1a;学术会议不是期刊&#xff0c;即使被SCI检索&#xff0c;也无法查询影响因子。那么如何知道各个领域的顶级会议&#xff0c;并对各个会议有初步了解呢…...

真的假不了,假的真不了

大家好&#xff0c;我是瑶琴呀&#xff0c;拥有一头黑长直秀发的女程序员。 最近&#xff0c;17岁的中专生姜萍参加阿里巴巴 2024 年的全球数学竞赛&#xff0c;取得了 12 名的好成绩&#xff0c;一时间在网上沸腾不止。 从最开始的“数学天才”&#xff0c;到被质疑&#xff…...

看完这篇文章你就知道什么是未来软件开发的方向了!即生成式AI在软件开发领域的革新=CodeFlying

从最早的UGC&#xff08;用户生成内容&#xff09;到PGC&#xff08;专业生成内容&#xff09;再到AIGC&#xff08;人工智能生成内容&#xff09;体现了web1.0→web2.0→web3.0的发展历程。 毫无疑问UGC已经成为了当前拥有群体数量最大的内容生产方式。 同时随着人工智能技术…...

HTML5五十六个民族网站模板源码

文章目录 1.设计来源高山族1.1 登录界面演示1.2 注册界面演示1.3 首页界面演示1.4 中国民族界面演示1.5 关于高山族界面演示1.6 联系我们界面演示 2.效果和源码2.1 动态效果2.2 源代码2.3 源码目录 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.ne…...

Linux_fileio实现copy文件

参考韦东山老师教程&#xff1a;https://www.bilibili.com/video/BV1kk4y117Tu?p12 目录 1. 通过read方式copy文件2. 通过mmap映射方式copy文件 1. 通过read方式copy文件 copy文件代码&#xff1a; #include <sys/types.h> #include <sys/stat.h> #include <…...

【JavaEE精炼宝库】多线程进阶(2)synchronized原理、JUC类——深度理解多线程编程

一、synchronized 原理 1.1 基本特点&#xff1a; 结合上面的锁策略&#xff0c;我们就可以总结出&#xff0c;synchronized 具有以下特性(只考虑 JDK 1.8)&#xff1a; 开始时是乐观锁&#xff0c;如果锁冲突频繁&#xff0c;就转换为悲观锁。 开始是轻量级锁实现&#xff…...

【Linux进程通信】使用匿名管道制作一个简单的进程池

进程池是什么呢&#xff1f;我们可以类比内存池的概念来理解进程池。 内存池 内存池是在真正使用内存之前&#xff0c;先申请分配一定数量的、大小相等(一般情况下)的内存块留作备用。当有新的内存需求时&#xff0c;就从内存池中分出一部分内存块&#xff0c;若内存块不够再继…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

基于Java项目的Karate API测试

Karate 实现了可以只编写Feature 文件进行测试,但是对于熟悉Java语言的开发或是测试人员,可以通过编程方式集成 Karate 丰富的自动化和数据断言功能。 本篇快速介绍在Java Maven项目中编写和运行测试的示例。 创建Maven项目 最简单的创建项目的方式就是创建一个目录,里面…...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...