当前位置: 首页 > news >正文

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

目录

    • 分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.MATLAB实现EMD-KPCA-Transformer多变量时间序列光伏功率预测;

2.多变量时间序列预测 就是先emd把原输入全分解变成很多维作为输入KPCA降维 再输入Transformer预测 ;

3.运行环境Matlab2023b及以上,输出RMSE、R2、MAPE、MAE等多指标对比,

先运行main1_EMD,进行emd分解;再运行main2_KPCA降维;再运行main3_EMD_KPCA_Transformer建模预测。

注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数;

4.运行环境为Matlab2023b及以上;

5.数据集为excel,光伏数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,所有文件放在一个文件夹;

6.命令窗口输出R2、RMSE、MAE、MAPE等多指标评价。

购&买后可加点击文章底部卡片博主咨询交流。注意:其他非官方渠道购&买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

clc;
clear 
close all%% Transformer预测
tic
load origin_data.mat
load emd_data.mat
load KPCA_data.mat%% EMD-KPCA-Transformer预测
tic
disp('…………………………………………………………………………………………………………………………')
disp('EMD-KPCA-Transformer预测')
disp('…………………………………………………………………………………………………………………………')data=[KPCA_data X(:,end)];num_samples = length(data);    % 样本个数 
kim = 5;                       % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(data,2);
res=[];
%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(data(i: i + kim - 1,:), 1, kim*or_dim), data(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

分解降维预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测 目录 分解降维预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测效果一览基本介绍程序设计参…...

【Python】MacBook M系列芯片Anaconda下载Pytorch,并开发一个简单的数字识别代码(附带踩坑记录)

文章目录 配置镜像源下载Pytorch验证使用Pytorch进行数字识别 配置镜像源 Anaconda下载完毕之后,有两种方式下载pytorch,一种是用页面可视化的方式去下载,另一种方式就是直接用命令行工具去下载。 但是由于默认的Anaconda走的是外网&#x…...

自定义控件动画篇(四)ObjectAnimator的使用

ObjectAnimator 是 Android 属性动画框架中的一个重要组件,它允许你针对特定属性的值进行动画处理。与 ValueAnimator 相比,ObjectAnimator 更专注于 UI 组件,可以直接作用于视图的属性,如位置、尺寸、透明度等,而无需…...

实现List接口的ArrayList和LinkedList

package study;import java.util.*;public class day01_list {public static void main(String[] args) {// <Integer> 这个尖括号表示的是 Java 的泛型&#xff08;Generics&#xff09;// 泛型是 Java 5 引入的一项特性&#xff0c;它允许你在 类、接口和方法 中使用类…...

下拉选择输入框(基于elment-ui)

最近在需求中&#xff0c;需要有一个下拉选择功能&#xff0c;又得可以输入&#xff0c;在 element-ui 官网找了&#xff0c;发现没有适合的&#xff0c;然后在修炼 cv 大法的我&#xff0c;也在网上看了一下&#xff0c;但是也都感觉不合适&#xff0c;所以就自己写了两个&…...

CPP入门:日期类的构建

目录 1.日期类的成员 2.日期类的成员函数 2.1构造和析构函数 2.2检查日期合法 2.3日期的打印 2.4操作符重载 2.4.1小于号 2.4.2等于号 2.4.3小于等于号 2.4.4大于号 2.4.5大于等于号 2.4.6不等号 2.4.7加等的实现 2.4.8加的实现 2.4.9减去一个天数的减等实现 2.4.10…...

springboot学习,如何用redission实现分布式锁

目录 一、springboot框架介绍二、redission是什么三、什么是分布式锁四、如何用redission实现分布式锁 一、springboot框架介绍 Spring Boot是一个开源的Java框架&#xff0c;由Pivotal团队&#xff08;现为VMware的一部分&#xff09;于2013年推出。它旨在简化Spring应用程序…...

【MySQL】如果表被锁可以尝试看一下事务

今天在MySQL中删除表的时候&#xff0c;发现无法删除&#xff0c;一执行drop&#xff0c;navicat就卡死。 通过 SHOW PROCESSLIST显示被锁了 kill掉被锁的进程后依旧被锁 最后发现是由于存在为执行完的事务 SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX; kill掉这些事务以…...

Datawhale - 角色要素提取竞赛

文章目录 赛题要求一、赛事背景二、赛事任务三、评审规则1.平台说明2.数据说明3.评估指标4.评测及排行 四、作品提交要求五、 运行BaselineStep1&#xff1a;下载相关库Step2&#xff1a;配置导入Step3&#xff1a;模型测试Step4&#xff1a;数据读取Step5&#xff1a;Prompt设…...

【Sql-驯化】sql中对时间的处理方法技巧总结

【Sql-驯化】sql中对时间的处理方法技巧总结 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; 免费获取相关内容文档关注&#xff1a;微信公众…...

TFD那智机器人仿真离线程序文本转换为现场机器人程序

TFD式样那智机器人离线程序通过Process Simulation、DELMIA等仿真软件为载体给机器人出离线&#xff0c;下载下来的文本程序&#xff0c;现场机器人一般是无法导入及识别出来的。那么就需要TFD on Desk TFD控制器来进行转换&#xff0c;才能导入现场机器人读取程序。 导入的文…...

贪心+后缀和,CF 1903C - Theofanis‘ Nightmare

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 1903C - Theofanis Nightmare 二、解题报告 1、思路分析 我们任意一种分组其实都是若干个后缀和相加 比如我们分成了三组&#xff0c;第一组的数被加了一次&#xff0c;第二组的数被加了两次&#xff0c;第…...

10分钟完成微信JSAPI支付对接过程-JAVA后端接口

引入架包 <dependency><groupId>com.github.javen205</groupId><artifactId>IJPay-WxPay</artifactId><version>${ijapy.version}</version></dependency>配置类 package com.joolun.web.config;import org.springframework.b…...

如何寻找一个领域的顶级会议,并且判断这个会议的影响力?

如何寻找一个领域的顶级会议&#xff0c;并且判断这个会议的影响力&#xff1f; 会议之眼 快讯 很多同学都在问&#xff1a;学术会议不是期刊&#xff0c;即使被SCI检索&#xff0c;也无法查询影响因子。那么如何知道各个领域的顶级会议&#xff0c;并对各个会议有初步了解呢…...

真的假不了,假的真不了

大家好&#xff0c;我是瑶琴呀&#xff0c;拥有一头黑长直秀发的女程序员。 最近&#xff0c;17岁的中专生姜萍参加阿里巴巴 2024 年的全球数学竞赛&#xff0c;取得了 12 名的好成绩&#xff0c;一时间在网上沸腾不止。 从最开始的“数学天才”&#xff0c;到被质疑&#xff…...

看完这篇文章你就知道什么是未来软件开发的方向了!即生成式AI在软件开发领域的革新=CodeFlying

从最早的UGC&#xff08;用户生成内容&#xff09;到PGC&#xff08;专业生成内容&#xff09;再到AIGC&#xff08;人工智能生成内容&#xff09;体现了web1.0→web2.0→web3.0的发展历程。 毫无疑问UGC已经成为了当前拥有群体数量最大的内容生产方式。 同时随着人工智能技术…...

HTML5五十六个民族网站模板源码

文章目录 1.设计来源高山族1.1 登录界面演示1.2 注册界面演示1.3 首页界面演示1.4 中国民族界面演示1.5 关于高山族界面演示1.6 联系我们界面演示 2.效果和源码2.1 动态效果2.2 源代码2.3 源码目录 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.ne…...

Linux_fileio实现copy文件

参考韦东山老师教程&#xff1a;https://www.bilibili.com/video/BV1kk4y117Tu?p12 目录 1. 通过read方式copy文件2. 通过mmap映射方式copy文件 1. 通过read方式copy文件 copy文件代码&#xff1a; #include <sys/types.h> #include <sys/stat.h> #include <…...

【JavaEE精炼宝库】多线程进阶(2)synchronized原理、JUC类——深度理解多线程编程

一、synchronized 原理 1.1 基本特点&#xff1a; 结合上面的锁策略&#xff0c;我们就可以总结出&#xff0c;synchronized 具有以下特性(只考虑 JDK 1.8)&#xff1a; 开始时是乐观锁&#xff0c;如果锁冲突频繁&#xff0c;就转换为悲观锁。 开始是轻量级锁实现&#xff…...

【Linux进程通信】使用匿名管道制作一个简单的进程池

进程池是什么呢&#xff1f;我们可以类比内存池的概念来理解进程池。 内存池 内存池是在真正使用内存之前&#xff0c;先申请分配一定数量的、大小相等(一般情况下)的内存块留作备用。当有新的内存需求时&#xff0c;就从内存池中分出一部分内存块&#xff0c;若内存块不够再继…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...