当前位置: 首页 > news >正文

深入理解 Java 中的线程间通信:`wait()`, `notify()`, `notifyAll()`

引言

在多线程编程中,线程间通信是一个重要且复杂的主题。Java 提供了一套基本的机制来实现线程间通信,即使用 wait(), notify(), 和 notifyAll() 方法。这些方法由 Object 类提供,用于协调多个线程对共享资源的访问。本文将详细介绍这些方法的工作原理、使用场景以及一些实际示例。

基本概念

wait()

wait() 方法使当前线程进入等待状态,直到另一个线程调用 notify()notifyAll() 方法唤醒它。调用 wait() 方法时,线程必须持有该对象的监视器锁(即必须在同步块或同步方法内调用 wait())。

notify()

notify() 方法唤醒在此对象监视器上等待的单个线程。如果有多个线程在等待,则其中一个线程将被唤醒,具体哪个线程被唤醒取决于线程调度器的实现。

notifyAll()

notifyAll() 方法唤醒在此对象监视器上等待的所有线程。这些线程将竞争重新获得该对象的监视器锁,并继续执行。

使用场景

生产者-消费者模式

生产者-消费者模式是多线程编程中的经典问题。在这个模式中,生产者线程生成数据并将其放入共享缓冲区,而消费者线程从缓冲区中取出数据进行处理。为了避免缓冲区溢出和空取,生产者和消费者需要协调工作。

示例代码

生产者-消费者实现

以下是一个使用 wait()notify() 实现的简单生产者-消费者示例:

import java.util.LinkedList;
import java.util.Queue;class ProducerConsumer {private final Queue<Integer> queue = new LinkedList<>();private final int MAX_SIZE = 10;public void produce() throws InterruptedException {int value = 0;while (true) {synchronized (this) {while (queue.size() == MAX_SIZE) {wait();}queue.add(value);System.out.println("Produced: " + value);value++;notify();Thread.sleep(100); // 模拟生产过程}}}public void consume() throws InterruptedException {while (true) {synchronized (this) {while (queue.isEmpty()) {wait();}int value = queue.poll();System.out.println("Consumed: " + value);notify();Thread.sleep(100); // 模拟消费过程}}}
}public class Main {public static void main(String[] args) {ProducerConsumer pc = new ProducerConsumer();Thread producerThread = new Thread(() -> {try {pc.produce();} catch (InterruptedException e) {Thread.currentThread().interrupt();}});Thread consumerThread = new Thread(() -> {try {pc.consume();} catch (InterruptedException e) {Thread.currentThread().interrupt();}});producerThread.start();consumerThread.start();}
}

代码解释

  1. ProducerConsumer 类中定义了一个共享队列 queue 和一个最大容量 MAX_SIZE
  2. produce() 方法生成数据并将其放入队列。当队列已满时,调用 wait() 进入等待状态。
  3. consume() 方法从队列中取出数据。当队列为空时,调用 wait() 进入等待状态。
  4. 当生产者生产了一个数据后,调用 notify() 唤醒等待的消费者。消费者同样在消费了一个数据后调用 notify() 唤醒等待的生产者。

注意事项

在同步块或同步方法内使用

wait(), notify(), 和 notifyAll() 方法必须在同步块或同步方法内调用,因为它们需要持有对象的监视器锁。如果在非同步块或非同步方法内调用这些方法,将抛出 IllegalMonitorStateException 异常。

避免虚假唤醒

虚假唤醒(spurious wakeups)是指线程在没有收到 notify()notifyAll() 通知的情况下被唤醒。因此,应该总是使用循环来调用 wait() 方法,而不是使用 if 语句:

synchronized (this) {while (condition) {wait();}// 执行代码
}

使用 notifyAll() 而非 notify()

在某些情况下,使用 notifyAll()notify() 更安全,因为 notifyAll() 可以唤醒所有等待的线程,避免某些线程永远等待的情况。例如,在有多个生产者和消费者时,notifyAll() 更能确保公平性。

结论

通过使用 wait(), notify(), 和 notifyAll() 方法,Java 提供了基本的线程间通信机制,可以有效地解决线程间的协作问题。理解并正确使用这些方法,对于编写高效且安全的多线程程序至关重要。

希望本文能帮助你理解 Java 中的线程间通信机制及其应用场景。如果你有任何问题或建议,欢迎留言讨论。

相关文章:

深入理解 Java 中的线程间通信:`wait()`, `notify()`, `notifyAll()`

引言 在多线程编程中&#xff0c;线程间通信是一个重要且复杂的主题。Java 提供了一套基本的机制来实现线程间通信&#xff0c;即使用 wait(), notify(), 和 notifyAll() 方法。这些方法由 Object 类提供&#xff0c;用于协调多个线程对共享资源的访问。本文将详细介绍这些方法…...

23种设计模式【创建型模式】详细介绍之【单例模式】

23种设计模式【创建型模式】详细介绍之【单例模式】 设计模式的分类和应用场景总结单例模式1. 概述2. 实现方式2.1 饿汉式单例模式2.2 懒汉式单例模式&#xff08;非线程安全&#xff09;2.3 懒汉式单例模式&#xff08;线程安全&#xff09; 3. 单例模式的优缺点3.1 优点3.2 缺…...

某汽车配件制造公司任职资格体系项目成功案例纪实

——基于岗位特点和核心能力要求&#xff0c;分层分级能力测评&#xff0c;实现个性化人才培养 【客户行业】生产制造&#xff1b;汽车配件制造 【问题类型】任职资格体系建立&#xff1b;人才管理系统 【客户背景】 某汽车配件制造公司是一家专注于汽车配件研发、生产和销…...

【Linux】生物信息学常用基本命令

wget网址用于直接从网上下载某个文件到服务器&#xff0c;当然也可以直接从网上先把东西下到本地然后用filezilla这个软件来传输到服务器上。 当遇到不会的命令时候&#xff0c;可以使用man “不会的命令”来查看这个命令的详细信息。比如我想要看看ls这个命令的详细用法&…...

React Native V0.74 — 稳定版已发布

嗨,React Native开发者们, React Native 世界中令人兴奋的消息是,V0.74刚刚在几天前发布,有超过 1600 次提交。亮点如下: Yoga 3.0New Architecture: Bridgeless by DefaultNew Architecture: Batched onLayout UpdatesYarn 3 for New Projects让我们深入了解每一个新亮点…...

Python面试宝典第4题:环形链表

题目 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。如果存在环 &#xff0c;则返回 true 。 否则&#xff0c;返回 false 。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xf…...

Kubernetes (K8s) 底层原理

Kubernetes (K8s) 的底层原理涉及多个关键组件和概念&#xff0c;确保容器化应用程序的自动化部署、扩展和管理。以下是 Kubernetes 的底层原理及其关键组件的详细描述。 核心组件 Etcd 功能&#xff1a;分布式键值存储&#xff0c;用于存储集群的所有数据&#xff0c;包括配置…...

解析Kotlin中的委托(包括类委托,属性委托)【笔记摘要】

1.委托模式 委托模式&#xff1a;操作对象不会去处理某段逻辑&#xff0c;而是会把工作委托给另外一个辅助对象去处理。 例如我们要设计一个自定义类的来实现Set&#xff0c;可以将该实现委托给另一个对象&#xff1a; class MySet<T> (val helperSet: HashSet<T>…...

vue3+ts+uniapp+vite+pinia项目配置

开发环境&#xff1a; node >18&#xff0c;npm >8.10.2&#xff0c;vue < 3.2.31 安装项目 npx degit dcloudio/uni-preset-vue#vite-ts vue3-uniapp 1、引入样式规范 npm add -D eslint eslint-config-airbnb-base eslint-config-prettier eslint-import-resolv…...

大数据开发语言 Scala(四):面向对象编程

目录 1. 概述 2. 面向对象编程的基本概念 2.1 类和对象 2.2 继承和多态 2.3 封装和访问控制 3. 面向对象编程在大数据开发中的应用 3.1 Spark中的面向对象编程 3.2 面向对象编程在数据清洗和预处理中 3.3 面向对象编程在机器学习中的应用 4. 面向对象编程的高级特性 …...

C++ //练习 14.31 我们的StrBlobPtr类没有定义拷贝构造函数、赋值运算符及析构函数,为什么?

C Primer&#xff08;第5版&#xff09; 练习 14.31 练习 14.31 我们的StrBlobPtr类没有定义拷贝构造函数、赋值运算符及析构函数&#xff0c;为什么&#xff1f; 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;vim 解释&#xff1a; 因为…...

通配符和正则表达式之间的关系

通配符和正则表达式&#xff08;正则&#xff09;都是用于匹配字符串的工具&#xff0c;但它们的复杂性和用途有所不同。下面是它们之间的主要关系和区别&#xff1a; 通配符 通配符主要用于简单的模式匹配&#xff0c;常见于文件系统操作中&#xff0c;例如在命令行中查找文…...

GY-30光照传感器软件I2C方式驱动代码,基于STM32Cube

GY-30光照传感器的具体资料可以去淘宝搜索然后问卖家要&#xff0c;网上也有&#xff0c;所以这里我就不多嘴了。 VCC连接3到5伏电压&#xff0c;根据文件开头的描述在STM32CubeMX中配置好外设。 STM32Cube开发方式就是4个字“简单直接”&#xff0c;直接上代码。 gy30.h #…...

双相元编程:一种新语言设计方法

本文讨论了编程语言的一种趋势&#xff0c;即允许相同的语法表达 在两个不同阶段或环境&#xff08;上下文&#xff09;中执行的计算同时保持跨阶段&#xff08;上下文&#xff09;的一致行为。这些阶段通常在时间上&#xff08;运行时间&#xff09;或空间上&#xff08;运行…...

基于SpringBoot校园外卖配送系统设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;…...

茗鹤APS高级计划排程系统,在集团多工厂协同生产下的应用

随着业务规模的扩大和市场的全球化&#xff0c;越来越多的企业选择“总部多工厂基地”的模式&#xff0c;此种模式大幅提升企业的产能与产量&#xff0c;有效分散风险。然后&#xff0c;与之而来的是对企业的管理提出更高的管理要求。多个生产基地不仅面临集团下发的周期性计划…...

分享六款免费u盘数据恢复工具,U盘恢复工具集合【工具篇】

U盘里面的数据丢失了怎么找回&#xff1f;随着数字化时代的深入发展&#xff0c;U盘已成为我们日常生活中不可或缺的数据存储工具。然而&#xff0c;由于各种原因&#xff0c;如误删除、格式化、病毒攻击等&#xff0c;U盘中的数据可能会丢失&#xff0c;给用户带来极大的困扰。…...

Linux 的启动流程

第一步、加载内核 操作系统接管硬件以后&#xff0c;首先读入 /boot 目录下的内核文件。 以我的电脑为例&#xff0c;/boot 目录下面大概是这样一些文件&#xff1a; $ ls /bootconfig-3.2.0-3-amd64config-3.2.0-4-amd64grubinitrd.img-3.2.0-3-amd64initrd.img-3.2.0-4-amd6…...

思维导图插件--jsMind的使用

vue引入jsmind&#xff08;右键菜单&#xff09;_jsmind.menu.js-CSDN博客 第一版 vue-JsMind思维导图实现&#xff08;包含鼠标右键自定义菜单&#xff09;_jsmind 右键菜单-CSDN博客 // 新增节点addNode() {console.log(this.get_selected_nodeid());this.get_selected_…...

mac上使用finder时候,显示隐藏的文件或者文件夹

默认在finder中是不显示隐藏的文件和文件夹的&#xff0c;但是想创建.gitignore文件&#xff0c;并向里面写入内容&#xff0c;即便是打开xcode也是不显示这几个隐藏文件的&#xff0c;那有什么办法呢&#xff1f; 使用快捷键&#xff1a; 使用finder打开包含隐藏文件的文件夹…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...