当前位置: 首页 > news >正文

深度学习经典检测方法概述

一、深度学习经典检测方法

two-stage(两阶段):Faster-rcnn Mask-Rcnn系列
one-stage(单阶段):YOLO系列
在这里插入图片描述
1. one-stage

最核心的优势:速度非常快,适合做实时检测任务!
但是缺点也是有的,效果通常情况下不会太好!

在这里插入图片描述

2. two-stage

速度通常较慢(5FPS),但是效果通常还是不错的!
非常实用的通用框架MaskRcnn

在这里插入图片描述

二、指标分析

1. IOU:交集(真实值和预测值)/并集
在这里插入图片描述
2. P-R图
精度和召回率计算
在这里插入图片描述在这里插入图片描述

精度是指模型正确预测为正例的样本数量与所有被模型预测为正例的样本数量的比率。换句话说,精度衡量了模型的预测中有多少是真正的正例。

召回率是指模型正确预测为正例的样本数量与所有实际正例的样本数量的比率。召回率衡量了模型能够正确识别多少真正的正例。

3. map指标:综合衡量检测效果;
在这里插入图片描述
举个例子。设定第一张图的预测框叫pre1,第一张的真实框叫label1。第二张、第三张同理。
在这里插入图片描述

(1)根据IOU计算TP,FP

首先我们计算每张图的pre和label的IOU,根据IOU是否大于0.5来判断该pre是属于TP还是属于FP。显而易见,pre1是TP,pre2是FP,pre3是TP。

(2)置信度排序

根据每个pre的置信度进行从高到低排序,这里pre1、pre2、pre3置信度刚好就是从高到低。

(3)在不同置信度阈值下获得Precision和Recall

  • 首先,设置阈值为0.9,无视所有小于0.9的pre。那么检测器检出的所有框pre即TP+FP=1,并且pre1是TP,那么Precision=1/1。因为所有的label=3,所以Recall=1/3。这样就得到一组P、R值。
  • 然后,设置阈值为0.8,无视所有小于0.8的pre。那么检测器检出的所有框pre即TP+FP=2,因为pre1是TP,pre2是FP,那么Precision=1/2=0.5。因为所有的label=3,所以Recall=1/3=0.33。这样就又得到一组P、R值。
  • 再然后,设置阈值为0.7,无视所有小于0.7的pre。那么检测器检出的所有框pre即TP+FP=3,因为pre1是TP,pre2是FP,pre3是TP,那么Precision=2/3=0.67。因为所有的label=3,所以Recall=2/3=0.67。这样就又得到一组P、R值。

(4)绘制PR曲线并计算AP值

根据上面3组PR值绘制PR曲线如下。然后每个“峰值点”往左画一条线段直到与上一个峰值点的垂直线相交。这样画出来的红色线段与坐标轴围起来的面积就是AP值。

在这里插入图片描述
(5)计算mAP

AP衡量的是对一个类检测好坏,mAP就是对多个类的检测好坏。就是简单粗暴的把所有类的AP值取平均就好了。比如有两类,类A的AP值是0.5,类B的AP值是0.2,那么mAP=(0.5+0.2)/2=0.35

mAP值越大表明,该目标检测模型在给定的数据集上的检测效果越好。

相关文章:

深度学习经典检测方法概述

一、深度学习经典检测方法 two-stage(两阶段):Faster-rcnn Mask-Rcnn系列 one-stage(单阶段):YOLO系列 1. one-stage 最核心的优势:速度非常快,适合做实时检测任务! 但是…...

<sa8650>sa8650 qcxserver-之-摄像头传感器VB56G4A驱动开发<1>

<sa8650>sa8650 qcxserver-之-摄像头传感器VB56G4A驱动开发 <1> 一、前言二、QCX架构三、QCX 传感器驱动程序定制开发3.1 sensor硬件接口3.2 sensor配置文件3.2.1 cameraconfig.c3.2.2 cameraconfigsa8650_water.c3.2.3 新增编译MK3.2.4 参数解析3.2.4.1 struct Camera…...

推荐8款超实用的ComfyUI绘画插件,帮助我们的AI绘画质量和效率提升几个档次!

前言 大家在使用SD绘画过程中&#xff0c;想必见识到了插件的强大功能&#xff0c;本身纯净版的SD界面是相对简洁的&#xff0c;但是搭配了各种插件后&#xff0c;界面标签栏会增加很多&#xff0c;相应的功能也增加了。 从简单的中文界面翻译插件&#xff0c;到强大的contro…...

MATLAB-振动问题:两自由度耦合系统自由振动

一、基本理论 二、MATLAB实现 以下是两自由度耦合系统自由振动质量块振动过程动画显示的MATLAB程序。 clear; clc; close allx0 1; D1 40; D12 8; D2 D1; m1 1; omega0 sqrt(D1/m1); k1 D12 / D1; k2 D12 / D2; k sqrt(k1 * k2); omegazh omega0 * sqrt(1 k); omeg…...

人工智能-NLP简单知识汇总01

人工智能-NLP简单知识汇总01 1.1自然语言处理的基本概念 自然语言处理难点&#xff1a; 语音歧义句子切分歧义词义歧义结构歧义代指歧义省略歧义语用歧义 总而言之&#xff1a;&#xff01;&#xff01;语言无处不歧义 1.2自然语言处理的基本范式 1.2.1基于规则的方法 通…...

Spring Boot中的异步编程技巧

Spring Boot中的异步编程技巧 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将探讨在Spring Boot应用程序中如何使用异步编程技巧&#xff0c;以提升性…...

深度解密Spark性能优化之道

课程介绍 课程通过实战案例解析和性能调优技巧的讲解&#xff0c;帮助学员提升大数据处理系统的性能和效率。课程内容涵盖了Spark性能调优的各个方面&#xff0c;包括内存管理、并行度设置、数据倾斜处理、Shuffle调优、资源配置等关键技术和策略。学员将通过实际案例的演示和…...

在U盘/移动硬盘上安装热插拔式Ubuntu系统,并将Docker目录挂载到NTFS硬盘

Windows10的WSL2的确给开发人员带来了很多方便&#xff0c;但是仍然有很多缺点。比如&#xff1a;太占系统内存&#xff1b;有些软件无法在WSL2中编译成功&#xff1b;相当于虚拟机&#xff0c;性能不如原装系统。 装双系统&#xff0c;相信大家都不陌生&#xff0c;但它会占用…...

商城小程序论文(设计)开题报告

一、课题的背景和意义 近些年来&#xff0c;随着移动互联网巅峰时期的来临&#xff0c;互联网产业逐渐趋于“小、轻、微”的方向发展&#xff0c;符合轻应用时代特点的各类技术受到了不同领域的广泛关注。在诸多产品中&#xff0c;被誉为“运行着程序的网站”之名的微信小程序…...

15. Java的 CAS 操作原理

1. 前言 本节内容主要是对 CAS 操作原理进行讲解&#xff0c;由于 CAS 涉及到了并发编程包的使用&#xff0c;本节课程只对 CAS 的原理问题进行讲解&#xff0c;有助于同学后续对并发编程工具使用的学习。本节具体内容点如下&#xff1a; 了解 CAS 的概念&#xff0c;这是本节…...

修改element-ui日期下拉框datetimePicker的背景色样式

如图&#xff1a; 1、修改背景色 .el-date-picker.has-sidebar.has-time { background: #04308D; color: #fff; border: 1px solid #326AFF } .el-date-picker__header-label { color: #ffffff; } .el-date-table th { color: #fff; } .el-icon-d-arrow-left:before { color: …...

Linux—— 逻辑运算符,压缩和解压缩

- -a&#xff1a; and 逻辑与 - -o&#xff1a; or 逻辑或 - -not&#xff1a; not 逻辑非 - 优先级&#xff1a;与>或>非 shell [rootserver ~]# find / -size 10k -a -size -50k [rootserver ~]# find /etc -name "e*" -o -name "f*"…...

音视频入门基础:H.264专题(6)——FFmpeg源码:从H.264码流中提取NALU Header、EBSP、RBSP和SODB

音视频入门基础&#xff1a;H.264专题系列文章&#xff1a; 音视频入门基础&#xff1a;H.264专题&#xff08;1&#xff09;——H.264官方文档下载 音视频入门基础&#xff1a;H.264专题&#xff08;2&#xff09;——使用FFmpeg命令生成H.264裸流文件 音视频入门基础&…...

STM32实现按键单击、双击、长按、连按功能,使用状态机,无延时,不阻塞

常见的按键判定程序&#xff0c;如正点原子按键例程&#xff0c;只能判定单击事件&#xff0c;对于双击、长按等的判定逻辑较复杂&#xff0c;且使用main函数循环扫描的方式&#xff0c;容易被阻塞&#xff0c;或按键扫描函数会阻塞其他程序的执行。使用定时器设计状态机可以规…...

C#之Delta并联机械手的视觉同步分拣

本文导读 前面两节课程我们介绍了怎么建立Delta并联机械手的正逆解以及如何通过视觉进行匹配定位。本节课程给大家分享如何通过C#语言开发正运动Delta并联机械手传送带同步的视觉分拣。 VPLC711硬件介绍 VPLC711是正运动推出的一款基于x86平台和Windows操作系统的高性能机器…...

01:Linux的基本命令

Linux的基本命令 1、常识1.1、Linux的隐藏文件1.2、绝对路径与相对路径 2、基本命令2.1、ls2.2、cd2.3、pwd / mkdir / mv / touch / cp / rm / cat / rmdir2.4、ln2.5、man2.6、apt-get 本教程是使用的是Ubuntu14.04版本。 1、常识 1.1、Linux的隐藏文件 在Linux中&#xf…...

GNSS 载波、测距码和导航电文的关系简介

1、GNSS 载波、测距码和导航电文 在卫星导航系统中&#xff0c;载波、测距码和导航电文是构成GPS信号的三个基本组成部分&#xff0c;它们共同工作以实现精确的卫星定位和导航功能。以下是对这三个组成部分的详细介绍&#xff1a; 1. 载波&#xff08;Carrier&#xff09;&…...

deepE 定位系统卡顿问题实战(一) ----------- 锁造成的阻塞问题

deepE介绍 deepE是一个开源的用于端侧(自动驾驶车,机器人)等环境的系统问题与性能分析工具。基于ebpf功能实现 deepE项目地址 欢迎star 测试程序 #include <iostream> #include <thread> #include <mutex>static std::mutex lock;void func1() {int l…...

YOLOv5改进 | 主干网络 | ODConv + ConvNeXt 增强目标特征提取能力

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 &#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 专栏目录&#xff1a; 《YOLOv5入门 …...

TIA博途WinCC通过VB脚本从 Excel中读取数据的具体方法介绍

TIA博途WinCC通过VB脚本从 Excel中读取数据的具体方法介绍 添加 一个PLC,设置PLC的IP地址,如下图所示, 添加全局DB块,新建几个变量,如下图所示, 在数据块中添加了 tag1 …… tag6 ,共 6 个浮点数类型的变量,用来接收通过 WinCC 从 Excel 文件中读取的数据。 添加 HMI…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...