像学Excel 一样学 Pandas系列-创建数据分析维度
嗨,小伙伴们。又到喜闻乐见的Python 数据分析王牌库 Pandas 的学习时间。按照数据分析处理过程,这次轮到了新增维度的部分了。
老样子,我们先来回忆一下,一个完整数据分析的过程,包含哪些部分内容。
其中,Pandas 的基础信息导入、数据导入和数据整理、数据探索和清洗已经在前几篇文章里聊过。
感兴趣的小伙伴,可以点击链接跳转观看。
像学Excel 一样学 Pandas系列-导入篇
像学Excel 一样学 Pandas系列-数据读取和合并篇
像学Excel 一样学 Pandas系列-数据探索和数据清洗

新增维度部分,是在完成数据探索,获取数据的现状,并且对脏数据完成清洗工作后的后道工序。而且,这部分非常的关键,很多分析场景下,需要做的挖掘分析,情况归类,都需要在维度新增里完成。

这个时候,Pandas 要开始变形了。为什么增加维度这么重要。
增加数据维度,是最终分析报告能获取到的分析颗粒度的有力支持。新增数据维度可以显著提升分析的深度和广度。

以我所在的汽车行业举例。
通过添加车辆特征维度(如发动机类型、驱动方式、燃油效率),可以更全面地了解具备哪些特性的车型更受消费者欢迎。结合销售数据和客户反馈维度,可以精确分析哪些车型的特定问题(如燃油效率低、维修率高)影响了客户满意度。
合并增加利用车辆使用数据(如行驶里程、维修记录)和客户人口统计信息,可以深入洞察车辆的长期性能和客户的忠诚度。
按例,为了方便后续的演示,同样创建一个虚拟的Pandas DataFrame来演示维度新增的过程。这个DataFrame,包括车型、销售日期、销售数量、客户年龄和客户收入等字段。
import Pandas as pddata = {'车型': ['轿车', 'SUV', '轿车', 'SUV', 'MPV'],'销售日期': pd.date_range(start='2024-01-01', periods=5, freq='D'),'销售数量': [10, 15, 12, 20, 8],'客户年龄': [34, 29, 45, 31, 41],'客户收入': [5000, 7000, 6000, 8000, 5500]}df = pd.DataFrame(data)

01 数据分箱映射
为啥我这么爱 pandas。每次做车型价格带分析,最烦躁的就是,今天 5 万一个档做价格带切割,明天还得弹性切割。每次做分组映射,分分钟烦死个人。在 Pandas 这里,一个函数就搞定。
假定,我们要根据客户收入将客户分为不同的等级。你只需要在 imcome_map 里配置一个映射字典,描述清楚“低收入”,“中等收入”,“高收入”人群的收入加个分层。
然后,使用 pd.cut 函数,配置分区的边界值 bins 和每一个分组对应的 labels,就可以完成映射了。
下次老板再找你调收入等级,分分钟完成。
#income_map = {# '低收入': [0, 3000],# '中等收入': (3000, 7000],# '高收入': (7000, np.inf)#} #备注给人类看的,区分每一个分层的收入范围。df['客户收入等级'] = pd.cut(df['客户收入'], bins=[0, 3000, 7000, np.inf],labels=['低收入', '中等收入', '高收入'])
看看,是不是超容易,是不是超简单!

02 多字段综合规则研判维度增加
老板拿到分箱结果后,说不行,我们还得综合客户的年龄来判断这个人的收入水平。那么,基于客户年龄和收入,我们创建一个新列来标识是否为潜在的高端客户。这就涉及了多字段综合规则研判维度增加的问题了。
df['潜在高端客户'] = df.apply(lambda row: '是' if row['客户年龄'] > 35 and row['客户收入'] > 5000 else '否', axis=1)
这里用一个 df.apply 函数,结合 lambda 函数,快速锁定年龄小于 35 岁,收入大于 5000 的用户,并且判断未潜在高端用户。
年纪轻轻就高收入,确实潜力不小,哈哈哈。

03 维度表映射增加
假设我们有一个车型维度表,包含车型对应的市场定位信息。这里可以通过 pd.merge,数据合并映射的方式,将 car_dim 里的维度添加如 df 内,形成一个新的列,这个列名就是“市场定位”。
car_dim = {'车型': ['轿车', 'SUV', 'MPV'],'市场定位': ['家用', '家用', '商务']}model_df = pd.DataFrame(car_dim)df = df.merge(model_df, on='车型', how='left')

这里有一个地方需要注意一下,你的车型和市场定位必须是一一映射匹配的关系。如果存在一对多的情况,使用 pdf.merge 就会分裂出新的数据行。
我们来看一个错误案例:我在 car_dim 里错误的将轿车的市场定位配置了两个类型,包含“家用”和“商务”。生成的结果数据里,每种情况,都分裂多出来的一条数据。这个,需要认真检查映射表字段的内容,是否严格遵守一一对应关系。

好啦,今天用超级简单的数据进行了数据维度新增的说明和演示。
如果小伙伴有其他想深入了解的内容,欢迎留言、关注、点赞、评论转发。您的每一份互动,都是我肝下去的动力。
相关文章:
像学Excel 一样学 Pandas系列-创建数据分析维度
嗨,小伙伴们。又到喜闻乐见的Python 数据分析王牌库 Pandas 的学习时间。按照数据分析处理过程,这次轮到了新增维度的部分了。 老样子,我们先来回忆一下,一个完整数据分析的过程,包含哪些部分内容。 其中,…...
Rust 基础教程
Rust 编程语言教程 Rust是一门注重安全、并发和性能的系统编程语言。本文将从Rust的基本语法、常用功能到高级特性,详细介绍Rust的使用方法。 目录 简介环境配置基础语法 变量和常量数据类型函数控制流 所有权和借用 所有权借用 结构体和枚举 结构体枚举 模块和包…...
Study--Oracle-06-Oracler网络管理
一、ORACLE的监听管理 1、ORACLE网络监听配置文件 cd /u01/app/oracle/product/12.2.0/db_1/network/admin 2、在Oracle数据库中,监听器(Listener)是一个独立的进程,它监听数据库服务器上的特定端口上的网络连接请求,…...
uniapp零基础入门Vue3组合式API语法版本开发咸虾米壁纸项目实战
嗨,大家好,我是爱搞知识的咸虾米。 今天给大家带来的是零基础入门uniapp,课程采用的是最新的Vue3组合式API版本,22年发布的uniappVue2版本获得了官方推荐,有很多同学等着我这个vue3版本的那,如果没有学过vu…...
数字信号处理教程(2)——时域离散信号与时域离散系统
上回书说到数字信号处理中基本的一个通用模型框架图。今天咱们继续,可以说今天要讲的东西必须是学习数字信号处理必备的观念——模拟与数字,连续和离散。 时域离散序列 由于数字信号基本都来自模拟信号,所以先来谈谈模拟信号。模拟信号就是…...
imx6ull/linux应用编程学习(8)PWM应用编程(基于正点)
1.应用层如何操控PWM: 与 LED 设备一样, PWM 同样也是通过 sysfs 方式进行操控,进入到/sys/class/pwm 目录下 这里列举出了 8 个以 pwmchipX(X 表示数字 0~7)命名的文件夹,这八个文件夹其实就对应了…...
等保2.0 实施方案
一、引言 随着信息技术的广泛应用,网络安全问题日益突出,为确保信息系统安全、稳定、可靠运行,保障国家安全、公共利益和个人信息安全,根据《网络安全法》及《信息安全技术 网络安全等级保护基本要求》(等保2.0&#x…...
7/3 第六周 数据库的高级查询
...
ubuntu20.04安装kazam桌面屏幕录制工具
在Ubuntu 20.04上安装Kazam可以通过以下步骤进行: 1.打开终端:可以通过按下Ctrl Alt T组合键来打开终端。 2.添加PPA源:Kazam不再在官方Ubuntu仓库中,但可以通过PPA源进行安装。在终端中输入以下命令来添加PPA: su…...
Python应对反爬虫的策略
Python应对反爬虫的策略 概述User-Agent 伪造应对302重定向IP限制与代理使用Cookies和Session管理动态内容加载数据加密与混淆请求频率限制爬虫检测算法法律与道德考量结语 概述 在数字化时代,网络数据采集已成为获取信息的重要手段之一。然而,随着技术…...
240703_昇思学习打卡-Day15-K近邻算法实现红酒聚类
KNN(K近邻)算法实现红酒聚类 K近邻算法,是有监督学习中的分类算法,可以用于分类和回归,本篇主要讲解其在分类上的用途。 文章目录 KNN(K近邻)算法实现红酒聚类算法原理数据下载数据读取与处理模型构建--计算距离模型预测 算法原理 KNN算法虽…...
keil5模拟 仿真 报错没有读写权限
debug*** error 65: access violation at 0x4002100C : no write permission 修改为: Dialog DLL默认是DCM3.DLL Parameter默认是-pCM3 应改为 Dialog DLL默认是DARMSTM.DLL Parameter默认是-pSTM32F103VE...
力扣爆刷第158天之TOP100五连刷56-60(子集、最小栈、最长有效括号)
力扣爆刷第158天之TOP100五连刷56-60(子集、最小栈、最长有效括号) 文章目录 力扣爆刷第158天之TOP100五连刷56-60(子集、最小栈、最长有效括号)一、78. 子集二、105. 从前序与中序遍历序列构造二叉树三、43. 字符串相乘四、155. …...
高薪程序员必修课-Java中 Synchronized锁的升级过程
目录 前言 锁的升级过程 1. 偏向锁(Biased Locking) 原理: 示例: 2. 轻量级锁(Lightweight Locking) 原理: 示例: 3. 重量级锁(Heavyweight Locking)…...
Vue项目打包上线
Nginx 是一个高性能的开源HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP代理服务器。它在设计上旨在处理高并发的请求,是一个轻量级、高效能的Web服务器和反向代理服务器,广泛用于提供静态资源、负载均衡、反向代理等功能。 1、下载nginx 2、…...
算法题中常用的C++功能
文章目录 集合优先队列双端队列排序时自定义比较函数最大数值字符串追加:删除:子串: 元组vector查找创建和初始化赋值: 字典map引入头文件定义和初始化插入元素访问元素更新元素删除元素检查元素存在遍历元素int和string转换 集合…...
左扰动和右扰动
在SLAM(Simultaneous Localization and Mapping)中,使用左扰动还是右扰动主要取决于你如何定义坐标系和你希望扰动影响的姿态表示。这通常与你的坐标系选择和你正在解决的具体问题有关。 左扰动通常用于以下情况: 当你使用局部坐…...
【计算机网络】期末复习(2)
目录 第一章:概述 第二章:物理层 第三章:数据链路层 第四章:网络层 第五章:传输层 第一章:概述 三大类网络 (1)电信网络 (2)有线电视网络 ࿰…...
ojdbc8-full Oracle JDBC 驱动程序的一个完整发行版各文件的功能
文章目录 1. ojdbc8.jar2. ons.jar -3. oraclepki.jar -4. orai18n.jar -5. osdt_cert.jar -6. osdt_core.jar -7. ojdbc.policy -8. README.txt -9. simplefan.jar -10. ucp.jar -11. xdb.jar - ojdbc8-full 是 Oracle JDBC 驱动程序的一个完整发行版,包含了连接和…...
在Linux环境下使用sqlite3时,如果尝试对一个空表进行操作(例如插入数据),可能会遇到表被锁定的问题。
在Linux环境下使用sqlite3时,如果尝试对一个空表进行操作(例如插入数据),可能会遇到表被锁定的问题。这通常是因为sqlite3在默认情况下会对空表进行“延迟创建”,即在实际需要写入数据之前,表不会被真正创建…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
【版本控制】GitHub Desktop 入门教程与开源协作全流程解析
目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork(创建个人副本)步骤 2: Clone(克隆…...
