当前位置: 首页 > news >正文

支持向量机(SVM)在机器学习中的简单示例

目录

工作原理

核函数

SVM用于分类

结果分析

结论


❤❤❤动动发财的小手点点赞点点关注哦~~~❤❤❤

支持向量机是一种强大的监督学习模型,用于分类和回归任务。它通过找到数据点之间的最优边界来区分不同的类别。SVM特别适用于那些具有清晰边界但线性不可分的数据集。

一、工作原理

SVM的工作原理是通过一个超平面来分隔不同的类别,这个超平面的选择基于最大化边界的原则。在这个边界上的数据点被称为支持向量,它们是SVM模型的关键。

二、核函数

SVM的一个关键特性是核函数的使用,它允许模型在更高维的空间中寻找最优超平面,而无需显式地映射输入数据。常用的核函数包括线性核、多项式核、径向基函数(RBF)核等。

三、SVM用于分类

以下是使用Python的scikit-learn库实现SVM进行二分类问题的示例代码:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 只取前两个类别进行二分类
X = X[y != 2]
y = y[y != 2]# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 创建SVM模型
svm_model = SVC(kernel='linear')  # 也可以使用'rbf', 'poly'等其他核函数# 训练模型
svm_model.fit(X_train, y_train)# 预测测试集
y_pred = svm_model.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

四、结果分析

上述代码首先加载了Iris数据集,并将其转换为一个二分类问题。然后,使用StandardScaler进行数据标准化,以提高SVM模型的性能。接着,创建了一个使用线性核的SVM模型,并在训练集上进行训练。最后,使用测试集评估模型的准确性。

五、结论

SVM是一种非常有效的机器学习算法,尤其适用于高维数据和非线性问题。通过选择合适的核函数和调整模型参数,SVM可以在多种任务中提供出色的性能。

请注意,运行上述代码需要安装Python环境和scikit-learn库。您可以通过运行

pip install scikit-learn

来安装scikit-learn

 

相关文章:

支持向量机(SVM)在机器学习中的简单示例

目录 工作原理 核函数 SVM用于分类 结果分析 结论 ❤❤❤动动发财的小手点点赞点点关注哦~~~❤❤❤ 支持向量机是一种强大的监督学习模型,用于分类和回归任务。它通过找到数据点之间的最优边界来区分不同的类别。SVM特别适用于那些具有清晰边界但线性不可分的…...

使用Anaconda虚拟环境安装Opencv、pytorch、torchvision踩坑记录

电脑 python 环境版本过高与下载Opencv(3.4以下)不匹配,因为版本过高部分算法收米, 从而在虚拟环境重新下载python老版本 本文默认您的电脑上已经安装了Anaconda 我是按照这位博文安装的 安装Opencv (详解)安装3.4.1.15版本…...

【人工智能】CPU、GPU与TPU:人工智能领域的核心处理器概述

在人工智能和计算技术的快速发展中,CPU(中央处理器)、GPU(图形处理器)和TPU(张量处理器)作为核心处理器,各自扮演着不可或缺的角色。它们不仅在性能上各有千秋,还在不同的…...

【康复学习--LeetCode每日一题】3099. 哈沙德数

题目: 如果一个整数能够被其各个数位上的数字之和整除,则称之为 哈沙德数(Harshad number)。给你一个整数 x 。如果 x 是 哈沙德数 ,则返回 x 各个数位上的数字之和,否则,返回 -1 。 示例 1&a…...

docker使用jdk21启动jar包报错

[0.007s][warning][os,thread] Failed to start thread "GC Thread#0" - pthread_create failed (EPERM) for attributes: stacksize: 1024k, guardsize: 4k, detached. [0.007s][error ][gc,task ] Failed to create worker thread解决办法 1 (使用doc…...

Object 类中的公共方法详解

Object 类中的公共方法详解 1、clone() 方法2、equals(Object obj) 方法3、hashCode() 方法4、getClass() 方法5、wait() 方法6、notify() 和 notifyAll() 方法 💖The Begin💖点点关注,收藏不迷路💖 在 Java 中,Object…...

python 字典 一个key 多 value 遍历

在Python中,如果一个键对应多个值,你需要确保这些值被存储在一个容器类型(如列表或集合)中。你可以使用默认字典(collections.defaultdict)来简化这个过程。以下是一个示例代码: from collecti…...

vue---基本原理(二)

1、slot的基础理解 slot又名插槽,是vue的内容分发机制,组件内部的模板引擎使用slot元素作为承载分发的出口。是子组件的一个模板标签元素,而这一个标签元素是否显示,以及怎么显示,是由父元素控制的。slot又分为默认插槽…...

桂花网蓝牙网关X1000:引领物联网新时代的智能连接

在物联网技术飞速发展的今天,蓝牙网关作为连接蓝牙设备与互联网的关键设备,其性能与稳定性直接影响到物联网系统的整体运行效果。桂花网蓝牙网关X1000凭借其卓越的性能和广泛的应用场景,成为了物联网领域的佼佼者。 一、产品概述 桂花网蓝牙…...

JAVA案例模拟电影信息系统

一案例要求: 二具体代码(需要在同一个包下创建三个类) Ⅰ:实现类 package 重修;import java.util.Random; import java.util.Scanner;public class first {public static void main(String[] args) {javabean[]moviesnew javabean[4];movies[0] new ja…...

基于Hadoop平台的电信客服数据的处理与分析③项目开发:搭建基于Hadoop的全分布式集群---任务10:Hive安装部署

任务描述 任务内容为安装并配置在Hadoop集群中使用Hive。 任务指导 Hive是一个基于Hadoop的数据仓库框架,在实际使用时需要将元数据存储在数据库中 具体安装步骤如下: 1. 安装MySQL数据库(已安装) 2. 解压缩Hive的压缩包 3…...

第一百四十二节 Java数据类型教程 - Java字符数据类型

Java数据类型教程 - Java字符数据类型 Character类的一个对象包装一个char值。 字符类包含isLetter()和isDigit()方法来检查字符是否为字母和数字。 toUpperCase()和toLowerCase()方法将字符转换为大写和小写。 该类提供了一个构造函数和一个工厂valueOf()方法来从char创建对…...

AI 绘画的常用技巧和操作方法

随着人工智能技术的飞速发展,AI 绘画已经成为设计和艺术领域的一股新兴力量。无论是设计师、艺术家,还是普通的科技爱好者,都能通过 AI 绘画工具创造出令人惊叹的作品。 AI 绘画的基本原理 AI 绘画的核心在于机器学习算法。通过训练大量的图像…...

Kafka入门到精通(四)-SpringBoot+Kafka

一丶IDEA创建一个空项目 二丶添加相关依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springf…...

起飞,纯本地实时语音转文字!

简介 偶然在 github 上翻到了这个项目 https://github.com/k2-fsa/sherpa-ncnn 在没有互联网连接的情况下使用带有 ncnn 的下一代 Kaldi 进行实时语音识别。支持 iOS、Android、Raspberry Pi、VisionFive2、LicheePi4A等。 也就是说语音转文字可以不再借助网络服务的接口&am…...

SQL面试题练习 —— 找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期

目录 1 题目2 建表语句3 题解 1 题目 找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期 样例数据 ----------------------------------------------- | user_login.user_id | user_login.login_date | ---------------------------------------------…...

微深节能 煤码头自动化翻堆及取料集控系统 格雷母线

微深节能格雷母线高精度位移测量系统是一种先进的工业自动化位置检测解决方案&#xff0c;它被广泛应用于煤码头自动化翻堆及取料集控系统中&#xff0c;以实现对斗轮堆取料机等大型机械设备的精准定位和自动化控制。 系统原理简述&#xff1a; 格雷母线系统的工作原理基于电磁…...

CSS 背景添加白色小圆点样式

css也是开发过程中不可忽视的技巧 此专栏用来纪录不常见优化页面样式的css代码 效果图: 未添加之前: 代码: background: radial-gradient(circle at 1px 1px, #3d3c3c 2px, transparent 0);background-size: 20px 25px;...

【HTML入门】第一课 - 网页标签框架

这一节&#xff0c;我们说一下学习前端开发的话&#xff0c;最入门的也是非常重要的一门可成&#xff0c;也就是HTML。HTML标签&#xff0c;是网页的重要组成部分&#xff0c;可以说&#xff0c;你看到网页上的内容&#xff0c;都是基于HTML标签呈现出来的。 这一小节呢&#…...

【DevOps】Elasticsearch集群JVM参数调整及滚动重启指南

目录 概述 准备工作 滚动重启步骤 1. 禁用分片分配&#xff08;可选&#xff09; 2. 关闭索引写操作 3. 检查集群状态 4. 重启Master节点 5. 重启Data节点 6. 重新开启索引写操作 7. 启用分片分配&#xff08;如果之前禁用了&#xff09; 8. 监控集群状态 结论 概述…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...