当前位置: 首页 > news >正文

SQL面试题练习 —— 找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期

目录

  • 1 题目
  • 2 建表语句
  • 3 题解

1 题目


找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期

样例数据

+---------------------+------------------------+--+
| user_login.user_id  | user_login.login_date  |
+---------------------+------------------------+--+
| 1                   | 2022-01-01             |
| 1                   | 2022-01-02             |
| 1                   | 2022-01-03             |
| 1                   | 2022-01-05             |
| 1                   | 2022-01-06             |
| 1                   | 2022-01-09             |
| 1                   | 2023-01-01             |
| 2                   | 2022-01-01             |
| 2                   | 2022-01-03             |
| 2                   | 2022-01-04             |
| 2                   | 2022-01-06             |
| 2                   | 2022-01-07             |
| 2                   | 2022-01-08             |
| 3                   | 2022-01-01             |
| 3                   | 2022-01-02             |
| 3                   | 2022-01-04             |
| 3                   | 2022-01-05             |
| 3                   | 2022-01-07             |
| 3                   | 2022-01-08             |
+---------------------+------------------------+--+

2 建表语句


-- 创建用户登录数据表
CREATE TABLE user_login(user_id INT,login_date DATE
);-- 插入模拟数据
INSERT INTO user_login VALUES
(1, '2022-01-01'),
(1, '2022-01-02'),
(1, '2022-01-03'),
(1, '2022-01-05'),
(1, '2022-01-06'),
(1, '2022-01-09'),
(1, '2023-01-01'),
(2, '2022-01-01'),
(2, '2022-01-03'),
(2, '2022-01-04'),
(2, '2022-01-06'),
(2, '2022-01-07'),
(2, '2022-01-08'),
(3, '2022-01-01'),
(3, '2022-01-02'),
(3, '2022-01-04'),
(3, '2022-01-05'),
(3, '2022-01-07'),
(3, '2022-01-08');

3 题解


  1. 计算本次登录日期与上一次登录日期差值
select user_id,login_date,datediff(login_date, lag(login_date) over (partition by user_id order by login_date )) as dt
from user_login

执行结果

+----------+-------------+-------+--+
| user_id  | login_date  |  dt   |
+----------+-------------+-------+--+
| 1        | 2022-01-01  | NULL  |
| 1        | 2022-01-02  | 1     |
| 1        | 2022-01-03  | 1     |
| 1        | 2022-01-05  | 2     |
| 1        | 2022-01-06  | 1     |
| 1        | 2022-01-09  | 3     |
| 1        | 2023-01-01  | 357   |
| 2        | 2022-01-01  | NULL  |
| 2        | 2022-01-03  | 2     |
| 2        | 2022-01-04  | 1     |
| 2        | 2022-01-06  | 2     |
| 2        | 2022-01-07  | 1     |
| 2        | 2022-01-08  | 1     |
| 3        | 2022-01-01  | NULL  |
| 3        | 2022-01-02  | 1     |
| 3        | 2022-01-04  | 2     |
| 3        | 2022-01-05  | 1     |
| 3        | 2022-01-07  | 2     |
| 3        | 2022-01-08  | 1     |
+----------+-------------+-------+--+
  1. 计算每个用户最近一次登录日期
select  user_id,max(login_date) recent_login_date
from user_login
group by user_id

执行结果

+----------+--------------------+--+
| user_id  | recent_login_date  |
+----------+--------------------+--+
| 1        | 2023-01-01         |
| 2        | 2022-01-08         |
| 3        | 2022-01-08         |
+----------+--------------------+--+
  1. 合并上述两张表

select t1.user_id,t1.login_date,t1.dt,t2.user_id,t2.recent_login_date
from (select user_id,login_date,datediff(login_date, lag(login_date) over (partition by user_id order by login_date )) as dtfrom user_login) t1left join(select  user_id,max(login_date) recent_login_datefrom user_logingroup by user_id) t2on t1.user_id = t2.user_id

执行结果

+-------------+----------------+--------+-------------+-----------------------+--+
| t1.user_id  | t1.login_date  | t1.dt  | t2.user_id  | t2.recent_login_date  |
+-------------+----------------+--------+-------------+-----------------------+--+
| 1           | 2022-01-01     | NULL   | 1           | 2023-01-01            |
| 1           | 2022-01-02     | 1      | 1           | 2023-01-01            |
| 1           | 2022-01-03     | 1      | 1           | 2023-01-01            |
| 1           | 2022-01-05     | 2      | 1           | 2023-01-01            |
| 1           | 2022-01-06     | 1      | 1           | 2023-01-01            |
| 1           | 2022-01-09     | 3      | 1           | 2023-01-01            |
| 1           | 2023-01-01     | 357    | 1           | 2023-01-01            |
| 2           | 2022-01-01     | NULL   | 2           | 2022-01-08            |
| 2           | 2022-01-03     | 2      | 2           | 2022-01-08            |
| 2           | 2022-01-04     | 1      | 2           | 2022-01-08            |
| 2           | 2022-01-06     | 2      | 2           | 2022-01-08            |
| 2           | 2022-01-07     | 1      | 2           | 2022-01-08            |
| 2           | 2022-01-08     | 1      | 2           | 2022-01-08            |
| 3           | 2022-01-01     | NULL   | 3           | 2022-01-08            |
| 3           | 2022-01-02     | 1      | 3           | 2022-01-08            |
| 3           | 2022-01-04     | 2      | 3           | 2022-01-08            |
| 3           | 2022-01-05     | 1      | 3           | 2022-01-08            |
| 3           | 2022-01-07     | 2      | 3           | 2022-01-08            |
| 3           | 2022-01-08     | 1      | 3           | 2022-01-08            |
+-------------+----------------+--------+-------------+-----------------------+--+
  1. 找出所有连续未登录5天及以上的用户
select t1.user_id,t2.recent_login_date
from (select user_id,login_date,datediff(login_date, lag(login_date) over (partition by user_id order by login_date )) as dtfrom user_login) t1left join(select  user_id,max(login_date) recent_login_datefrom user_logingroup by user_id) t2on t1.user_id = t2.user_id
where t1.dt >= 5;

执行结果

+-------------+-----------------------+--+
| t1.user_id  | t2.recent_login_date  |
+-------------+-----------------------+--+
| 1           | 2023-01-01            |
+-------------+-----------------------+--+

相关文章:

SQL面试题练习 —— 找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期

目录 1 题目2 建表语句3 题解 1 题目 找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期 样例数据 ----------------------------------------------- | user_login.user_id | user_login.login_date | ---------------------------------------------…...

微深节能 煤码头自动化翻堆及取料集控系统 格雷母线

微深节能格雷母线高精度位移测量系统是一种先进的工业自动化位置检测解决方案,它被广泛应用于煤码头自动化翻堆及取料集控系统中,以实现对斗轮堆取料机等大型机械设备的精准定位和自动化控制。 系统原理简述: 格雷母线系统的工作原理基于电磁…...

CSS 背景添加白色小圆点样式

css也是开发过程中不可忽视的技巧 此专栏用来纪录不常见优化页面样式的css代码 效果图: 未添加之前: 代码: background: radial-gradient(circle at 1px 1px, #3d3c3c 2px, transparent 0);background-size: 20px 25px;...

【HTML入门】第一课 - 网页标签框架

这一节,我们说一下学习前端开发的话,最入门的也是非常重要的一门可成,也就是HTML。HTML标签,是网页的重要组成部分,可以说,你看到网页上的内容,都是基于HTML标签呈现出来的。 这一小节呢&#…...

【DevOps】Elasticsearch集群JVM参数调整及滚动重启指南

目录 概述 准备工作 滚动重启步骤 1. 禁用分片分配(可选) 2. 关闭索引写操作 3. 检查集群状态 4. 重启Master节点 5. 重启Data节点 6. 重新开启索引写操作 7. 启用分片分配(如果之前禁用了) 8. 监控集群状态 结论 概述…...

软设之多态

在面向对象的语言中,多态就是相同方法,不同的表现。 重写和重载时多态具体的表现形式。 重载,举个例子,有一个猫类,定义了一个叫的方法,正常叫的值是“喵喵”,愤怒时叫的值是“喵呜” 重写&a…...

SD NAND时序解析

一、SD NAND时序的重要性 在SD NAND的数据传输过程中,时序起着至关重要的作用。正确的时序确保了数据能够准确无误地在主机和SD NAND之间传输。 二、命令与读写时序 SD NAND的通信基于命令和数据传输,遵循以下时序规则: 命令与响应交互&…...

CSS-实例-div 水平居中 垂直靠上

1 需求 2 语法 3 示例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>表格水平居中、垂直靠上示例…...

数据分析入门指南:从基础概念到实际应用(一)

随着数字化时代的来临&#xff0c;数据分析在企业的日常运营中扮演着越来越重要的角色。从感知型企业到数据应用系统的演进&#xff0c;数据驱动的业务、智能优化的业务以及数智化转型成为了企业追求的目标。在这一过程中&#xff0c;数据分析不仅是技术的运用&#xff0c;更是…...

ArcGIS Pro三维空间分析、专题制图、遥感制图全流程系统教学

ESRI宣布&#xff1a;ArcGIS 10.8.2 是 ArcMap 的当前版本&#xff0c;在 2026 年 3 月 1 日之前将继续受支持。我们没有计划在 2021/22 年随 ArcGIS 版本一起发布 ArcMap 10.9.x。这意味着 10.8.x 系列将是 ArcMap 的最终版本系列&#xff0c;并将在 2026 年 3 月 1 日之前受支…...

Redis 7.x 系列【17】四种持久化策略

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Redis 版本 7.2.5 源码地址&#xff1a;https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 案例演示2.1 无持久化2.2 RDB2.3 AOF2.4 混合模式2.4.1 方式一&#xff1a;…...

开发经验:go切片的继承

package main import ( "errors" "fmt" ) // LimitedSlice 是一个封装了切片的结构体&#xff0c;用于限制切片的最大容量 type LimitedSlice struct { slice []int maxCap int } // NewLimitedSlice 创建一个新的LimitedSlice实例&#xff…...

PyQt5事件机制解析:从原理到实战一网打尽!

PyQt5事件机制 一、简介1.1 PyQt5的概述和作用 1.2 为什么学习PyQt5事件机制1.2.1 实现用户交互1.2.2 处理复杂逻辑1.2.3 自定义用户界面行为1.2.4 优化性能 二、PyQt5事件机制初步了解2.1 PyQt5事件的概念和基本原理2.1.1 PyQt5事件的概念2.1.2 PyQt5事件的基本原理 2.2 事件处…...

GraphQL与RESTful API的区别和优势

GraphQL GraphQL是一种用于API设计的语言和查询协议&#xff0c;由Facebook于2015年推出。它允许客户端向服务器指定他们需要的数据字段&#xff0c;而不是像RESTful API那样请求整个资源然后过滤数据。在GraphQL中&#xff0c;客户端发送一个单一的请求&#xff0c;而服务器返…...

关于 Qt4Qt5迁移至Qt6出现QDesktopWidget和QApplication::desktop()删除后兼容Qt6 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/140036861 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

【HarmonyOS NEXT】鸿蒙Socket 连接

简介 Socket 连接主要是通过 Socket 进行数据传输&#xff0c;支持 TCP/UDP/Multicast/TLS 协议。 基本概念 Socket&#xff1a;套接字&#xff0c;就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象。TCP&#xff1a;传输控制协议(Transmission Control Proto…...

1978Springboot在线维修预约服务应用系统idea开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot在线维修预约服务应用系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发 &#xff09;&#xff0c;系统具有完整的源代码和…...

【vue】实现自动轮播+滚轮控制

前言 有一个无缝轮播+滚轮控制的需求,找了很多的方法发现都没办法完美的实现这种效果。 用原生的js实现不是无缝滚动 用无缝滚动插件实现,发现pc端无法实现滚轮控制 目标 1 实现表格表无缝循环滚动 2 实现滚轮控制表格表数据滚动 3 掌握vue-seamless-scroll使用方式 一些思考…...

鸿翼FEX文件安全交换系统,打造安全高效的文件摆渡“绿色通道”

随着数字经济时代的到来&#xff0c;数据已成为最有价值的生产要素&#xff0c;是企业的重要资产之一。随着数据流动性的增强&#xff0c;数据安全问题也随之突显。尤其是政务、金融、医疗和制造业等关键领域组织和中大型企业&#xff0c;面临着如何在保障数据安全的同时&#…...

苹果电脑虚拟机运行Windows Mac环境安装Win PD19虚拟机 parallels desktop19虚拟机安装教程免费密钥激活

在如今多元的数字时代&#xff0c;我们经常需要在不同的操作系统环境下进行工作和学习。而对于 Mac 用户来说&#xff0c;有时候需要在自己的电脑上安装 Windows 操作系统&#xff0c;以体验更多软件及功能&#xff0c;而在 Mac 安装 Windows 虚拟机是常用的一种操作。下面就来…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...